Probl. Inf. Parasit. Dis. Vol. 48, 2020, 1

IN SILICO DEVELOPMENT OF HIGH-RESOLUTION MLVA TYPING SCHEME FOR ENTEROCOCCUS FAECIUM

I. Stoikov^{1,2}, I. N. Ivanov¹, S. Sabtcheva²

¹ National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria ² Laboratory for Clinical Microbiology, University specialised hospital for active treatment in oncology (National oncology centre), Sofia, Bulgaria

ABSTRACT

Emergence of enterococci as nosocomial pathogens is frequently associated with hospital outbreaks. Vancomycin resistance is especially perturbing as it limits the possible therapeutic options. Based on vast in silico analysis, we introduce a multiple-locus variable-number tandem repeat analysis (MLVA) scheme for genotyping of Enterococcus faecium isolates, parameters of which are comparable to these of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The scheme was tested in silico on all available at this time *E. faecium* genomes in NCBI Genbank. Searching for suitable variable number of tandem repeats (VNTR) loci was conducted with a set of free access applications. Ten VNTR loci were selected according to their polymorphic structure and stability using the Primer-BLAST utility of NCBI. Primers were designed to be compatible in a multiplex reaction and the method was adapted for high resolution separation techniques. As a result, a total of 60 MLVA profiles and 35 MLST profiles were generated from the analysis of 114 sequenced genomes. Minimum spanning trees were created for both MLVA and MLST in order to analyze the genetic relatedness between isolates. Hunter Gaston discriminatory index was measured for both MLVA (0,959) and MLST (0,926). Typeability was also measured for both methods (MLVA - 85.9%; MLST - 89.4%). These results suggest that the new MLVA

ADDRESS FOR CORRESPONDENCE:

Ivan Stoikov

National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance National Center of Infectious and Parasitic Diseases 26 Yanko Sakazov blvd 1504 Sofia, Bulgaria

Phone: +359 2 9446999 ext. 208 e-mail: ivanstoikovbt@gmail.com

scheme is suitable for epidemiological studies of hospital-adapted *E. faecium* isolates.

KEYWORDS:

Enterococcus faecium, MLVA, MLST, VNTR

ABBREVIATIONS

VRE – vancomycin-resistant enterococci

PFGE – pulsed-field gel electrophoresis

MLST – multilocus sequence typing

TRs - tandem repeats

VNTR – variable number of tandem repeats

MLVA – multiple-locus variable-number tandem repeat analysis

MT - MLVA type

TRF – Tandem Repeats Finder

TRDB – Tandem Repeats Database

WGS - whole-genome sequencing

ST – sequence type

HGDI – Hunter Gaston discriminatory index

CI – confidence interval

MST - minimum spanning tree

INTRODUCTION

The genus Enterococcus consists of gram positive, facultatively anaerobic cocci. They are usually found in human and animal intestinal tract as part of the normal microflora. However, they also appear important nosocomial pathogens causing infections in immunocompromised patients. Enterococcus faecalis and Enterococcus faecium are the two most common pathogens among the enterococcal species (1). Enterococci have intrinsic resistance to penicillin and cephalosporins due to expression of low affinity penicillin-binding proteins (2). E. faecium and E. faecalis have innate resistance to aminoglycosides due to reduced membrane permeability (3, 4). E. faecium possess an enzyme called aminoglycoside 6'acetyltransferase (AAC(6')li) which confers resistance to tobramycin and kanamycin (5). Another E. faecium-specific enzyme is the efmM-encoded 16S rRNA m⁵C methyltransferase which confers resistance to dibekacin, tobramycin and kanamycin (6).

The antimicrobial agents to which enterococci may possess resistance include macrolides, tetracyclines, lincosamides, chloramphenicol, vancomvcin, quinolones, linezolid, quinupristin/dalfopristin. Vancomycin resistance is especially perturbing (1). Vancomycin-resistant enterococci (VRE) reported for the first time in the late 1980s in USA and Europe. Vancomycin resistance is usually associated with the acquisition of vanA or vanB gene cluster (7, 8). The frequency of this type of resistance is much higher for E. faecium than for any other enterococci. A correlation between the higher rates of acquisition of vancomycin resistance and the higher rates of infections caused by E. faecium was observed (9).

Most enterococci usually do not have the classic virulence factors, which is the reason they cause infections primarily in seriously ill or immunocompromised patients.

In a hospital setting enterococci can be transmitted from patients to other patients or even to the personnel. Enterococci are not necessarily causing infections. They can colonise the intestinal tract of a healthy person making him a carrier who can further transmit them. If no action is taken, this can become a prerequisite for an outbreak. No so comial enterococcal pathogens can be isolated from personnel's gloves. medical equipment, different surfaces and passively contaminated environment with feces and urine. Some of the risk factors for acquisition of nosocomial enterococcal infections are: severe or chronic illness; prolonged hospital stay: transplantations; urinary or vascular catheters; residence in the intensive care unit; renal insufficiency; post-antibiotic therapy; neutropenia (1).

The emergence of enterococci as a cause of hospital outbreaks defines the need for reliable and accessible method for genotyping which can easily discriminate between different strains and between pathogen and wild strains.

Pulsed-field gel electrophoresis (PFGE) is considered as the "gold standard" in molecular typing of clinically relevant isolates. This is due to its high discrimination ability, typeability and reliable epidemiological concordance it provides. It is an inexpensive method with good intra- and interlaboratory reproducibility. There are standardised protocols and international fingerprinting database (Pulsenet) which gives the opportunity to detect and monitor the dissemination of pathogen strains among different countries. However, this method has its disadvantages. It is technically demanding and requires qualified personnel. Furthermore, fragments with lengths differing by 5% are not discriminable. Also its portability is still an issue (10). Multilocus sequence typing (MLST) is another method for genotyping of different isolates. It is based on sequencing and its discriminatory power is comparable to that of PFGE. There is an international standardised nomenclature and free databases (http://pubmlst.org and www.mlst.net) which contain information about the allele sequences and sequence types (ST). Thus, the results generated by this method are less likely to be ambiguous. These databases also provide an online tool (eBURST) for determining genetic relatedness between isolates. Unfortunately, this method also has its disadvantages. It is expensive, time-consuming and labor-intensive (11). Along with these, a lower discriminatory power regarding some isolates is observed which makes this method non-applicable for routine screening and monitoring of hospital outbreaks.

In 2004, J.Top et al. published detailed multiple-

locus variable-number tandem repeat analysis scheme (MLVA-6) for genotyping of *E. faecium*, which was developed and tested on total of 392 isolates, from which 126 with clinical origin (blood, urine, wounds), 68 from clinical studies, 111 isolates from 25 documented hospital outbreaks, 17 from society-derived infections, and 70 isolates from different environments, animals and foods.

Searching for tandem repeats (TRs) in the genomic sequences, that were not yet completed due to the lack of reliable whole-genome sequencing (WGS) technologies at the time, is accomplished with specialised software called Tandem Repeats Finder (TRF) (12). Initially the scheme consisted of 10 loci which were selected based on the following criteria: TRs minimum length – 20 bases; conservation of TRs – (>90%); location of TRs – in non-coding regions. Later, 4 of the loci are excluded, leaving the scheme with only 6 loci (13).

The aim of this study is to introduce a new and reliable MLVA scheme (MLVA10) for typing of *E. faecium* with parameters comparable to these of PFGE and MLST.

MATERIALS AND METHODS

Five referent genomes were randomly selected and downloaded from NCBI GenBank: 1. *E. faecium DO* (CP003583.1); 2. *E. faecium Aus0004* (CP003351.1); 3. *E. faecium ATCC 8459 = NRRL B-2354* (CP004063.1); 4. *E. faecium Aus0085* (CP006620.1); 5. *E. faecium AUSMDU00004055* (CP027506.1). Searching for suitable loci in these genomes was conducted with a set of specialised softwares.

Tandem Repeats Finder (https://tandem.bu.edu/ trf/trf.html) was used first. The search of TRs was performed according to the following criteria: pattern of TRs - 1 to 100 bases; number of TRs minimum 2; alignment parameters (match, mismatch, indel) - (2,7,7). The referent genomes were uploaded for analysis in the form of FASTA files. Subsequently we came across another web application – Polloc V (14) which was able to search for TRs in 3 genomes simultaneously. It also gave an opportunity for sequence comparison which makes selection of polymorphic loci easier. Searching criteria used were as follows: Region length – unlimited; Unit length – 3-60 bp; Copy number of TRs – 2 or more; Alignment parameters – match/mismatch/indel (-2;-7;-7); Similarity percentage – >90%.

Another web application described in publication of Lee et al. ("pSTR Finder: a rapid method to discover polymorphic short tandem repeat markers from whole-genome sequences") was tested. pSTR Finder is searching for TRs with lengths 1-10bp (15). The search criteria were as follows: Alignment Score (match, mismatch, indel) – 2,7,7; Min Align Score – 50; Max Repeat Unit – 10; 5′ & 3′ Flanking Sequence Size – 15.

Tandem Repeats Database, described in "TRDB—The Tandem Repeats Database", was also used. Concatenation of the referent genomes was done and the search of VNTR loci was performed according to the following criteria: Alignment Parameters (match, mismatch, indels) - 2, 7, 7; Minimum Alignment Score To Report Repeat – 50. Another software for genome processing and analysis, developed by Biomatters, used in our study, was Geneious Prime.

Primers were designed according to all criteria for primer design for each locus with Geneious Prime and Oligo7 (Table 1).

Analysis for determination and confirmation of the polymorphic structure of the VNTR was performed on all the available at this time sequenced genomes in NCBI Genbank using the web application of NCBI – Primer-BLAST.

RESULTS AND DISCUSSION

We selected 9 original loci based on their variability and stability, and designed primers for each of them. VNTR-9 from MLVA6 was included, but with new original primers and different amplicon lengths in order to use it in multiplex PCR. MLVA10 was adapted for high resolution separation techniques like capillary electrophoresis and chip-based technologies, which allow separation of fragments differing by ~5 bp.

Table 1. Primer sequences for each VNTR locus.

Table 1.11	inici sequences for each vivin locus.
VNTR	Primers
VNTR9	Forward: TCGACCAATCTCCACATAGCC
	Reverse: TCGCCTGCATTTCCACCTAG
VNTR89	Forward: TTGGAGCCGGAGTACTACTTC
	Reverse: CAACAAGCTGCACAAGAAAAAG
VNTR90	Forward:TTATCAGCGACAATGGTACAGA
	Reverse: CGTGTATCGCTTGTGGTAGAC
VNTR93	Forward: CTGGTATTCCTTGGTCTCTTG
	Reverse: TACCGCCTACAGAAAATCCAG
VNTR94	Forward: AATCGCKTATATYCGTTTTGC
VIVIR94	Reverse: AGCATTTTCCAAGGAAATGCC
VNTR96	Forward: CAAGCAGGAAATCGAGGCTA
	Reverse: CCCAGCCTCTTCTTTTTTATAG
VNTR121	Forward: CTGCACGAACAAACTATGGAC
VINIINIZI	Reverse: CAGCCAAKGATATGAATGTTAACG
VNTR148	Forward: CCAGAACGATCACCACAAAA
	Reverse: AAGAAAAGAGTAACAATCGCT
VNTR152	Forward: CATCGGCTGGAATATTTCGTC
VIVIIVIJZ	Reverse: GCAGCTGAAAGTCTAGTTGTC
VNTR153	Forward: TTTTACGTCGTTCTGCTCT
VINTK 153	Reverse: AACGACGGACCTTGAAGC

It was inconvenient that TRF works only with 1 genome at a time and the data it provides cannot

be filtered, which makes the process difficult and time consuming. It was also not possible to differentiate between polymorphic and nonpolymorphic loci which was essential for the purposes of this study.

The web application "Polloc V", developed by Luis-Miguel Rodriguez-R and Ralf Koebnik, which was used, contains integrated TRF algorithm (12). The role of Polloc V is to arrange the loci in groups based on the rate of similarity and their flanking regions. Then the groups can be visualized with a software for genomic processing like Geneious (16).

pSTR Finder (pSTR) is developed to analyze multiple samples of genome sequences for the presence of STRs. That application is also TRF based and it is available for non-commercial use (15). The user must provide sequences as FASTA files and use one of them as referent. Additionally, the length of the 5' and 3' flanking regions can be specified which is useful for subsequent sequence comparison analyzes. Unfortunately, we did not achieve any success with this application. Concatenating the referent genomes was necessary for the following clustering and analysis of the potential polymorphic loci. However, processing of concatenated genomes turned out to be beyond the capabilities of this software.

This issue was resolved by using TRDB. In 1999 Benson developed TRF – the algorithm which is now the basis for most of the available softwares for tandem repeats searching. TRDB consists of 2 parts: 1. public information about TRs, their nature and location in a set of different genomes; 2. the researchers work table where the user can chose between a set of different tools for genome processing.

Initially, TRDB contain information about 22 genomes. Later, more genomes are added as sequence information became available. TRDB gives the user an opportunity to search and filter certain TRs; to cluster TRs based on sequence identity; to predict polymorphic loci based on basic mutation patterns; to construct primers with interface based on Primer3 application (17); to download and save information in different formats; to visualize dynamic histograms and scatterplots of TRs characteristics; to align and visualize TRs in a separate browser (18).

The combination of two Geneious plugins - Mauve (19) and Phobos (20) played a key role in the detection of VNTRs. Mauve was used to make multiple alignment of the five referent genomes, and the other plugin – Phobos, was used to search for VNTRs directly in the aligned genomes, which facilitated the differentiation between polymorphic and non-polymorphic loci. Primers and their templates in each referent genome are shown on Figure 1.

Forward primer		Reverse primer
TCGACCAATCTCCACATAGCC	VNTR9	TCGCCTGCATTTCCACCTAG
Forward primer		Reverse primer
CP027506.1 TTGGAGCCGGAGTACTACTTC	VNTR89	CAACAAGCTGCACAAGAAAAAG
CP004063.1 TTGGAGCCGGAGTACTACTTC	VNTR89	CAACAAGCTGCACAAGAAAAAG
TTGGAGCCGGAGTACTACTTC	VNTR89	CAACAAGCTGCACAAGAAAAAG
CP003351.1 TTGGAGCCGGAGTACTACTTC	VNTR89	CAACAAGCTGCACAAGAAAAAG
CP006620.1	VNTR89	CAACAAGCTGCACAAGAAAAAG
Forward primer		Reverse primer
Forward primer TTATCAGCGACAATGGTACAGA	VNTR90	Reverse primer CGTGTATCGCTTGTGGTAGAC
TTATCAGCGACAATGGTACAGA	VNTR90 VNTR90	-
CP027506.1 TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA	VNTR90 VNTR90	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC
CP027506.1 TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA	VNTR90 VNTR90 VNTR90	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC
TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA	VNTR90 VNTR90 VNTR90	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC
TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA TTATCAGCGACAATGGTACAGA	VNTR90 VNTR90 VNTR90 VNTR90	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC
TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CTGGTATTCCTTGGTCTCTTG	VNTR90 VNTR90 VNTR90 VNTR90	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC Reverse primer TACCGCCTACAGAAAATCCAG
CP027506.1 TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP007506.1 CTGGTATTCCTTGGTCTCTTG CTGGTATTCCTTGGTCTCTTG	VNTR90 VNTR90 VNTR90 VNTR93	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC TACCGCCTACAGAAAATCCAG TACCGCCTACAGAAAATCCAG
TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 CTGGTATTCCTTGGTCTCTTG CP004063.1 CTGGTATTCCTTGGTCTCTTG	VNTR90 VNTR90 VNTR90 VNTR90 VNTR93	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC Reverse primer TACCGCCTACAGAAAATCCAG TACCGCCTACAGAAAATCCAG
TTATCAGCGACAATGGTACAGA CP004063.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003583.1 TTATCAGCGACAATGGTACAGA CP003351.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP006620.1 TTATCAGCGACAATGGTACAGA CP007506.1 CTGGTATTCCTTGGTCTCTTG CTGGTATTCCTTGGTCTCTTG CTGGTATTCCTTGGTCTCTTG	VNTR90 VNTR90 VNTR90 VNTR93 VNTR93 VNTR93	CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC CGTGTATCGCTTGTGGTAGAC TACCGCCTACAGAAAATCCAG TACCGCCTACAGAAAATCCAG TACCGCCTACAGAAAATCCAG TACCGCCTACAGAAAATCCAG

	Forward primer		Reverse primer
CP027506.1			AGCATTTTCCAAGGAAATGCC
CP004063.1	AATCGCYTATATKCGTTTTGC	VNTR94	AGCATTTTCCAAGGAAATGCC
CP003583.1		VNTR94	AGCATTTTCCAAGGAAATGCC
		VNTR94	AGCATTTTCCAAGGAAATGCC
	AATCGCYTATATKCGTTTTGC	VNTR94	AGCATTTTCCAAGGAAATGCC
	Forward primer		Reverse primer
CP027506.1	CAAGCAGGAAATCGAGGCTA	VNTR96	CCCAGCCTCTTCTTTTTTATAG
CP004063.1	CAAGCAGGAAATCGAGGCTA	VNTR96	CCCAGCCTCTTCTTTTTTATAG
CP003583.1	CAAGCAGGAAATCGAGGCTA	VNTR96	CCCAGCCTCTTCTTTTTTATAG
CP003351.1	CAAGCAGGAAATCGAGGCTA	VNTR96	CCCAGCCTCTTCTTTTTTATAG
CP006620.1			CCCAGCCTCTTCTTTTTTATAG
	Forward primer		Reverse primer
CD027506 1	CTGCACGAACAAACTATGGAC	VNTR121	CAGCCAAKGATATGAATGTTAACG
CP027506.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121	CAGCCAAKGATATGAATGTTAACGT
CP004063.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121	CAGCCAAKGATATGAATGTTAACGT CAGCCAAKGATATGAATGTTAACGT CAGCCAAKGATATGAATGTTAACG
CP004063.1 CP003583.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121 VNTR121 VNTR121	CAGCCAAKGATATGAATGTTAACGTCAGCCAAKGATATGAATGTTAACGTCAGCCAAKGATATGAATGTTAACGTCAGCCAAKGATATGAATGTTAACGTCAGCCAAKGATATGAATGTTAACG
CP004063.1 CP003583.1 CP003351.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121 VNTR121 VNTR121	CAGCCAAKGATATGAATGTTAACGT
CP004063.1 CP003583.1 CP003351.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121 VNTR121 VNTR121	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACG
CP004063.1 CP003583.1 CP003351.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC	VNTR121 VNTR121 VNTR121	CAGCCAAKGATATGAATGTTAACGT
CP004063.1 CP003583.1 CP003351.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC Forward primer CCAGAACGATCACCACAAAA	VNTR121 VNTR121 VNTR121 VNTR121	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACG
CP004063.1 CP003583.1 CP003351.1 CP006620.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC Forward primer CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA	VNTR121 VNTR121 VNTR121 VNTR124 VNTR148	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. Reverse primer AAGAAAAGAGTAACAATCGCT
CP004063.1 CP003583.1 CP003351.1 CP006620.1 CP027506.1 CP004063.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC Forward primer CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA	VNTR121 VNTR121 VNTR121 VNTR124 VNTR148 VNTR148	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. Reverse primer AAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCT
CP004063.1 CP003583.1 CP003351.1 CP006620.1 CP004063.1 CP003583.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC Forward primer CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA	VNTR121 VNTR121 VNTR121 VNTR121 VNTR148 VNTR148 VNTR148	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. Reverse primer AAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCTAAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCT
CP004063.1 CP003583.1 CP003351.1 CP006620.1 CP004063.1 CP003583.1 CP003351.1	CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC CTGCACGAACAAACTATGGAC Forward primer CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA CCAGAACGATCACCACAAAA	VNTR121 VNTR121 VNTR121 VNTR121 VNTR148 VNTR148 VNTR148 VNTR148	CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. CAGCCAAKGATATGAATGTTAACGT. Reverse primer AAGAAAAGAGTAACAATCGCTAAGAAAAGAGTAACAATCGCTAAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCT AAGAAAAGAGTAACAATCGCT

	Forward primer		Reverse primer
CP027506.1	CATCGGCTGGAATATTTCGTC	VNTR152	GCAGCTGAAAGTCTAGTTGTC
CP004063.1	CATCGGCTGGAATATTTCGTC	VNTR152	GCAGCTGAAAGTCTAGTTGTC
	CATCGGCTGGAATATTTCGTC	VNTR152	GCAGCTGAAAGTCTAGTTGTC
CP003583.1	CATCGGCTGGAATATTTCGTC	VNTR152	GCAGCTGAAAGTCTAGTTGTC
<u>CP003351.1</u>	CATCGGCTGGAATATTTCGTC	VNTR152	GCAGCTGAAAGTCTAGTTGTC
CP006620.1			
	Forward primer		Reverse primer
CP027506.1	TTTTACGTCGTTCTGCTCT	VNTR153	AACGACGGACCTTGAAGC
CP027506.1	TTTTACGTCGTTCTGCTCT	VNTR153	AACGACGGACCTTGAAGC
CP004063.1	TTTTACGTCGTTCTGCTCT TTTTACGTCGTTCTGCTCT	VNTR153 VNTR153	AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC
CP004063.1 CP003583.1	TTTTACGTCGTTCTGCTCT TTTTACGTCGTTCTGCTCT TTTTACGTCGTTCTGCTCT	VNTR153 VNTR153 VNTR153	AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC
CP004063.1	TTTTACGTCGTTCTGCTCT TTTTACGTCGTTCTGCTCT TTTTACGTCGTTCTGCTCT	VNTR153 VNTR153 VNTR153 VNTR153	AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC AACGACGGACCTTGAAGC

Figure 1. Used primers and the corresponding templates. Red letters correspond to ambiguous nucleotide bases (K=T/G; Y=C/T). Dots correspond to complete complementarity. At the left accession numbers of the referent genomes in NCBI Genbank are shown.

Hunter Gaston discriminatory index (HGDI) was measured for every single locus used (Table 2).

Table 2. HGDI for every locus of the new scheme.

VNTR	TR length (bp)	No. of Alleles	Fragment Length min/max (bp)	HGDI
VNTR9	121	0-2	666-911	0,509
VNTR89	33-36	2-7	298-475	0,479
VNTR90	57	6-18	331-1048	0,707
VNTR93	24	2-13	201-465	0,647
VNTR94	12	2-9	164-248	0,225
VNTR96	10	1-2,5	129-148	0,34
VNTR121	12	1-2	128-140	0,282
VNTR148	5	1-2	90-95	0,119
VNTR152	6	1-2	106-112	0,45
VNTR153	12	1-2	56-68	0,310

A total of 59 MLVA types (MTs) were generated from the *in silico* analysis of 114 isolates.

Some of the new loci showed lower discriminatory index than others. However, they were essential discrimination between some initially indistinguishable sequence types. ST21, ST121 and ST456 were placed in one MLVA type. The addition of VNTR148 in the scheme resulted in dividing ST121 from ST21 and ST456. MLVA10 was unable to divide several variants of ST16 and ST17. ST796 and ST192 were also indistinguishable and the addition of VNTR153 solved this issue. ST5 was successfully separated from ST6 and ST1147, and also ST16 from ST282 by VNTR96. Another indistinguishable pair was ST412 and ST656. Two variants of ST412 shared the same MLVA profile with ST656. One of them was successfully separated by VNTR90, but the other remained bound to ST656. ST398 was separated from ST598 by VNTR148 and VNTR153. One variant of ST203 also remained indistinguishable from ST266. Minimum spanning tree (MST) based on the in silico analysis was created for MLVA profiles. Eight of all the MLVA profiles contained 2 MLST profiles each (Fig.2). The opposite was also observed. Some MLST profiles (e.g. ST117, ST203) were divided and fell into different MLVA types, which is probably due to their high variability. MLVA10 failed to type 16 isolates, from which 8 were untypeable by both methods. The other 8 were successfully typed by MLST. The inability of MLVA10 to genotype some isolates is probably due to mutational events in some of the target loci

A total of 35 sequence types were acquired from the analysis in PubMLST (Public databases for molecular typing and microbial genome diversity) (21). Twelve of all the 114 isolates were not typeable by MLST. Four of these 12 were successfully typed by MLVA10. The rest 8 isolates were not typeable by both methods as mentioned above.

In order to get clearer and complete picture we analyzed the reverse option too. Minimum spanning tree based on MLST profiles was also created (Fig. 3). Sequence types which are divided into 2 or more MLVA types are pointed out by arrows. ST203, ST117 and ST17 turned out to be highly variable. ST203 is broken down into 7 MLVA types, ST117 – 10 MLVA types, ST17-7 MLVA types. These results show that MLVA10 is highly discriminatory against the variations in some of the sequence types.

With the current set of VNTR loci, MLVA10 was unable to discriminate between the following STs: ST21 and ST456; ST16 and ST17; ST6 and ST1147; ST117 and ST203; ST412 and ST656; ST117 and ST78; ST203 and ST266.

MLVA6 issues were similar – inability for discrimination of the following STs is observed: ST18, ST282, ST17, ST280 - MLVA type 1; ST65, ST16 - MLVA type 5; ST18, ST202 - MLVA type 7; ST78, ST117 - MLVA type 12; ST78, ST192, ST203, ST283 - MLVA type 159; ST279, ST314, ST307 - MLVA type 231. Table 3 summarizes the problems of the both schemes.

Table 3. Problems of MLVA6 and MLVA10

	MLVA	Sequence type
	type	
MLVA6	1	ST18; ST282; ST17; ST280
	5	ST65; ST16
	7	ST18; ST203
	12	ST78; ST117
	159	ST78; ST192; ST203; ST283
	231	ST279; ST314; ST307
MLVA10	31	ST6; ST1147
	36	ST117; ST203
	38	ST21; ST456
	39	ST656; ST412
	41	ST203; ST266
	46	ST117; ST78
	50	ST16; ST17

ST78 and ST117 remained an issue for both the modified and the original scheme.

Discriminatory power of MLVA10 and MLST based on the *in silico* analysis was measured with the web app Comparing partitions (http://www.comparingpartitions.info/?link=Home). HGDI value for MLVA10 was 0.960 with confidence intervals 95% (Cl95%) from 0.932 to 0.988. HGDI value for MLST was 0,928 with Cl95% from 0.902 to 0.954. In order to get accurate result, isolates untypeable by one or both the methods, were excluded.

Comparison of the typeability between MLVA10 and MLST was also made. MLVA showed 85.9% typeability and MLST – 89.4%. MLVA10 was unable to type 16 of all 114 isolates, while MLST failed to type 12 of 114 isolates.

Some of the untypeable isolates are probably wild strains which are quite divergent and their genome can differ slightly from nosocomial

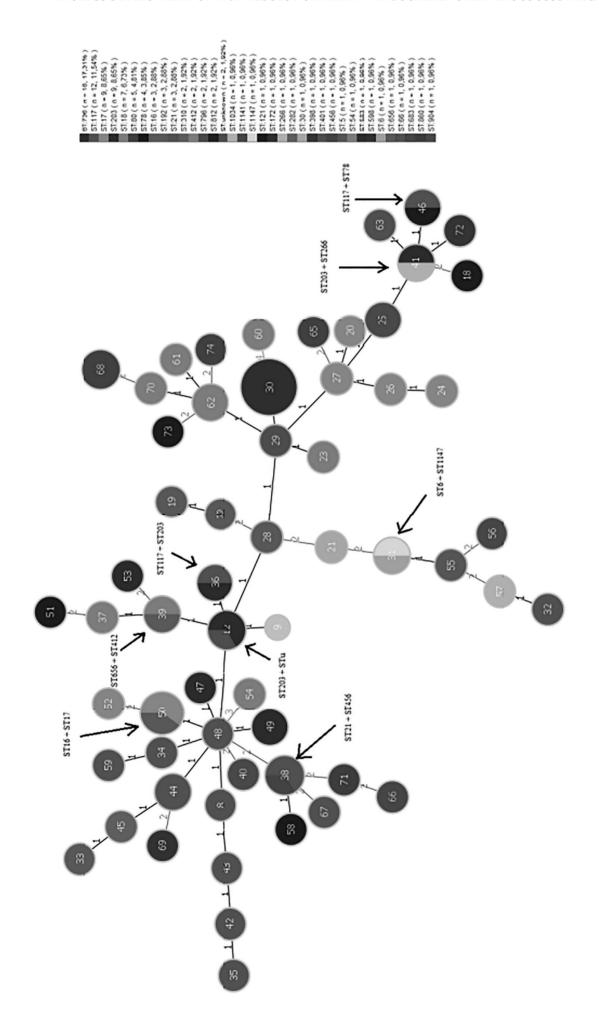


Figure 2. Minimum spanning tree (MST) based on 10 locus MLVA allele profiles of 114 E. faecium isolates used in in silico analysis. Relationship between different MLVA types is shown as line with an index of the number of loci by which they diverge. The arrows point out the MLVA types which contain more than 1 sequence types. STu corresponds to unknown sequence type. Isolates untypeable by both methods were excluded.

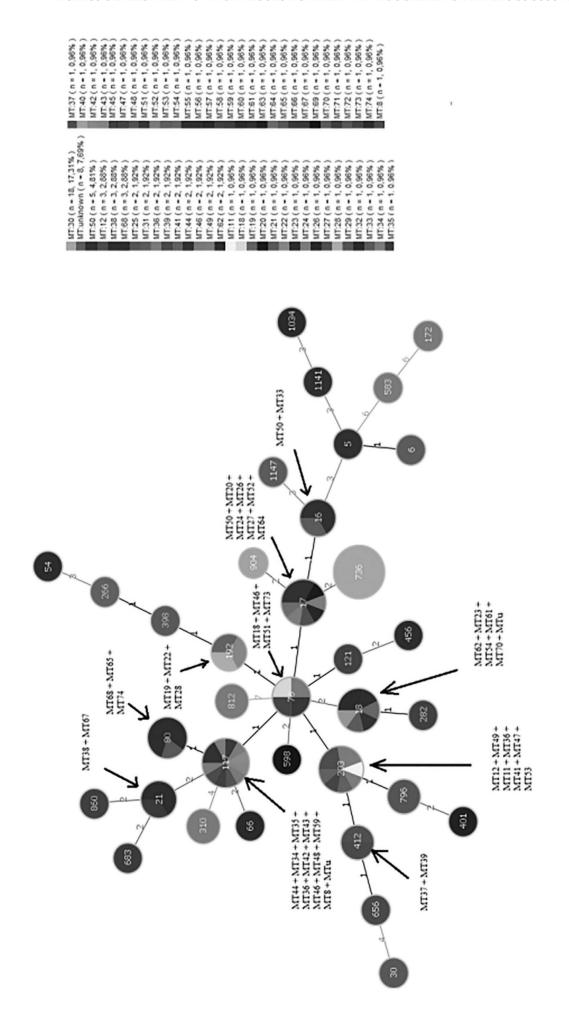


Figure 3. Minimum spanning tree (MST) based on MLST allele profiles of 114 E. faecium isolates used in in silico analysis. Relationship between different sequence types is shown as line with an index of the number of loci by which they diverge. The arrows point out the sequence types which are divided into more than 1 MLVA types. MTu corresponds to unknown MLVA type. Isolates untypeable by both methods were excluded.

IN SILICO DEVELOPMENT OF HIGH-RESOLUTION MLVA TYPING SCHEME FOR ENTEROCOCCUS FAECIUM

strains. The inability of MLVA10 to genotype some isolates may be due to mutational events in some of the target loci.

CONCLUSIONS

Further examination and addition of more polymorphic loci compatible with the new multiplex PCR scheme can result in better discriminatory power.

MLVA shows higher discriminatory power than MLST and allows the prediction of sequence type with high accuracy.

MLVA10 is suitable for epidemiological studies of hospital-adapted isolates. Also it allows establishing of phylogenetic relatedness between geographically divergent strains.

MLVA can be performed within 4 hours (by capillary electrophoresis) per ~36 isolates, which is significantly faster than MLST and PFGE. It is costeffective and easy to implement which makes it suitable for routine screening.

REFERENCES

- Murray BE. 2008. Louisiana Office of Public Health Infectious Disease Epidemiology Section ENTEROCOCCAL INFECTIONS, VANCOMYCIN RESISTANT. N Engl J Med 342:710–721.
- Sifaoui F, Arthur M, Rice L, Gutmann L. 2001. Role of penicillinbinding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother 45:2594–7.
- Zimmermann RA, Moellering RC, Weinberg AN. 1971. Mechanism of resistance to antibiotic synergism in enterococci. J Bacteriol 105:873–9.
- Moellering RC, Weinberg AN. 1971. Studies on antibiotic synergism against enterococci. J Clin Invest 50:2580–2584.
- Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P. 1993. Characterization of the chromosomal aac(6')-li gene specific for Enterococcus faecium. Antimicrob Agents Chemother 37:1896– 903.
- 6. Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite

- S, Mechulam Y, Courvalin P. 2011. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 17:251–262.
- ARTHUR M, REYNOLDS P, COURVALIN P. 1996. Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407.
- 8. Willems RJL, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJM. 2005. Global spread of vancomycinresistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–8.
- Iwen PC, Kelly DM, Linder J, Hinrichs SH, Dominguez EA, Rupp ME, Patil KD. 1997. Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob Agents Chemother 41:494–5.
- Nashev D, Budimir A, Friedrich AW, on behalf of the ESCMID Study Group, Grundmann H, van Dijl JM, Laurent F, Sá-Leão R, Sabat AJ. 2017. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance 18:1– 15.
- Sabat AJ, Chlebowicz MA, Grundmann H, Arends JP, Kampinga G, Meessen NEL, Friedrich AW, van Dijl JM. 2012. Microfluidic-Chip-Based Multiple-Locus Variable-Number Tandem-Repeat Fingerprinting with New Primer Sets for Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol 50:2255–2262.
- 12. Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580.
- 13. Top J, Schouls LM, Bonten MJM, Willems RJL. 2004. Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J Clin Microbiol 42:4503–4511.
- 14. Luis-Miguel Rodriguez-R RK. Polloc V.
- 15. Lee JC-I, Tseng B, Ho B-C, Linacre A. 2015. pSTR Finder: a rapid method to discover polymorphic short tandem repeat markers from whole-genome sequences. Investig Genet 6:10.
- 16. Nakato GV, Fuentes Rojas JL, Verniere C, Blondin L, Coutinho T, Mahuku G, Wicker E. 2019. A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset. PLoS One 14:e0215090.
- 17. Misener S, Krawetz SA, Rozen S, Skaletsky H. Primer3 on the WWW for General Users and for Biologist Programmers.
- Gelfand Y, Rodriguez A, Benson G. 2007. TRDB The Tandem Repeats Database. Nucleic Acids Res 35:80–87.
- 19. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS One 5:e11147.
- 20. Phobos: Highly accurate search for perfect and imperfect tandem repeats in complete genomes by Christoph Mayer.
- Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Res 3.