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ABSTRACT
Urinary tract infections (UTIs) are the most com-

mon type of infections second only to respiratory 
tract infections. Millions of UTI cases are reported 
each year, affecting in- and outpatients. The most 
frequent causative agents of UTIs are the enteric 
Gram-negative bacteria, among which Escherichia 
coli (E. coli) dominates. While most strains of E. coli 
are harmless and indeed play a beneficial role in gut 
health, some strains (uropathogenic Escherichia coli, 
UPEC) can cause infections when they are translocat-
ed to generally sterile body areas, such as the urinary 
tract. 

This review presents the wide range of virulence 
factors of UPEC, involved in the urinary tract coloniza-
tion, infection development and host tissue invasion. 
Cell-associated and extracellular key virulence factors 
such as adhesins, invasins, iron acquisition factors, 
factors mediating serum resistance, toxins and struc-
tural components are discussed in detail. Also, the 
review focuses on the process of biofilm formation, 
another crucial virulence factor in UPEC, responsible 
for UTI persistence, reoccurrence and antimicrobial 
therapy failure. The regulatory mechanisms involved 
in biofilm production are also discussed.
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Escherichia coli (E. coli) is a Gram-negative bacterial 
species, a member of the order Enterobacterales. It 
is an opportunistic organism, part of the human mi-
crobiota, with the potential to cause intestinal and 
extraintestinal infections, including severe invasive 
complications [1]. Members of the species belong 
to several phylogenetic groups, A, B1, B2, C, D, E, F 
and clade I [2, 3]. Nonpathogenic strains of E. coli are 
most commonly from A and B1 groups, while those 
causing extraintestinal infections are usually assigned 
to B2 and D groups [4, 5]. Extraintestinal pathogenic 
E. coli (ExPEC) can cause a variety of infections usual-
ly associated with penetration in primary sterile ana-
tomical areas or with severely immunocompromised 
patients. The ExPEC group is currently represented by 
UPEC (uropathogenic E. coli), NMEC (neonatal men-
ingitis-associated E. coli), SEPEC (sepsis-associated E. 
coli) and AREC (avian pathogenic E. coli) [4, 5].

Urinary tract infections (UTIs) are among the most 
common bacterial infections in both community and 
hospital settings, with over 150 million cases diag-
nosed annually worldwide [6]. In over 80%, UTIs are 
associated with E. coli [7]. Most UTIs are caused by 
the highly heterogeneous UPEC group. UPEC strains 
due to their multiple virulence factors, usually en-
coded on pathogenicity islands, plasmids and other 
mobile genetic elements, migrate from the intestinal 
tract, colonize the urinary tract and cause different 
types of UTIs [4, 5]. The virulence factors related to 
UTIs pathogenesis are extremely diverse and serve 
different functions (adhesins, invasins, iron acqui-
sition factors, factors mediating serum resistance, 
toxins, structural components and etc.) [8]. They are 
divided into two major groups - cell-associated and 
extracellular virulence factors.

Cell-associated virulence factors 
1. Outer membrane: lipopolysaccharides and pro-

teins
Lipopolysaccharides
Lipopolysaccharides (LPS) are a major component 

of the outer membrane of E. coli. Due to strong im-
munogenicity, they play a key role in the activation 
of host immune system. LPS are composed of lipid A, 
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responsible for the toxicity of the structure, R antigen 
and the O antigen, which is the major bacterial so-
matic antigen [9]. Based on the O antigen specificity, 
there are more than 180 different E. coli serotypes, 
with UPEC belonging mainly to O1, O2, 04, O6, O7, 
O8, O14, O15, O16, O18, O21, O22, O25, 075 and 
O83 [10-15]. Amongst them, there is an E. coli sub-
type, which belongs to O25 serogroup and a widely 
spread and hypervirulent sequence type 131 – E. coli 
O25b/ST131. It is often associated with UTIs and sub-
sequent complications such as sepsis. Furthermore, 
the majority of the isolates are multidrug-resistant 
and render the therapy with beta-lactams, fluoro-
quinolones and aminoglycosides ineffective [3].  Typi-
cally, uropathogenic serotypes of E. coli have the abil-
ity to inhibit the induction of certain cytokines in the 
epithelial cells, specifically IL-6 and IL-8 [16, 17]. In 
addition, the resistance to serum bactericidal effect 
(serum resistance) is also associated with specific O 
antigens typical for UPEC (O6, O8) [18].

Outer membrane proteins
Outer membrane protein A (OmpA) is one of the 

major outer membrane proteins of E. coli. It is as-
sociated with multiple structural and physiological 
functions, including maintenance of the cell shape 
and stability, biofilm formation, adhesion, colicins, 
bacteriophages receptor and F-dependent conjuga-
tion [19]. OmpA has been documented in all ExPEC 
strains [20]. It is believed that OmpA plays a key role 
in the intracellular bacterial colony formation and 
long-term persistence of E. coli in the bladder [21].  
Another important outer membrane protein is asso-
ciated with the traT gene – a transfer surface exclu-
sion lipoprotein, which confers serum resistance and 
prevents bacterial death [3].

2. Flagella
Е. coli is a motile organism with motility, mediat-

ed by peritrichial flagella. These surface structures, 
composed of the protein flagellin, are of particular 
importance for the UPEC virulence. The flagella are 
directly related to the bacterial cell adhesion and col-
onization of the urinary tract and biofilm production 
during the course of the UTI [22, 23]. A direct link has 
been demonstrated between the flagella production 
and the fimbriae production in UPEC strains, and the 

regulation of expression of these structures are high-
ly linked and coordinated [24]. This is mediated by 
the Pap X repressor localized in the P fimbrial operon 
of UPEC, with Pap X overexpression leading to inhibi-
tion of the flhDC gene and to a reduction in flagella 
production and respectively to decreasing the bacte-
rial cell motility [25, 26].

3. Adhesive structures
The bacterial attachment to the uroepithelial cell is 

critical for the onset and subsequent development of 
UTI [27]. The ability of E. coli to adhere to the uroepi-
thelium, to resist to urinary flashing and colonize the 
urinary tract is associated with the expression of spe-
cific adhesins. These thin and extracellularly located 
protein filamentous organelles are called fimbriae or 
pili. The loss of the ability of bacterial cell to attach to 
and, respectively to colonize the anatomic region by 
adhesin-mediated recognition of specific receptors is 
often sufficient to render it avirulent [28]. Of note, 
adhesive structures (type 1, P, S fimbriae) mediate 
both the bacterial cell attachment process and cyto-
kine production by T-lymphocytes, play an important 
role in tissue invasion and inflammation [29, 30].

 Type 1 fimbriae, P, S and F1C fimbriae and some 
afimbrial adhesins are the most common adhesion 
factors found in UPEC [31-33]. They occur more fre-
quently in UPEC than in commensal strains of E. coli 
[34].

Type 1 fimbriae
Type 1 fimbriae are extremely prevalent among 

both UPEC (86-100%) and commensal isolates [35-
37]. They are considered to be one of the most im-
portant and critical virulence factors [38]. Type 1 fim-
briae are encoded by the highly conserved fim operon 
including 9 genes (fimA, B, C, D, E, F, G, H, I) and its 
expression is under phase variation control [39, 40]. 
Products of the fim operon are structural (FimA, FimI, 
FimF, FimG), adhesion (FimH) and regulatory proteins 
(FimB, FimE) [41]. The fimH gene mediates the bind-
ing of the fimbriae via the FimH adhesin, located at 
the end of the structure, to specific D-mannose-con-
taining receptors, found mainly on epithelial cells of 
the lower urinary tract and less in the renal paren-
chyma [42, 43]. An additional function of type 1 pili, 
particularly in cases of pyelonephritis, is to aid bio-
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film formation by binding to urothelial uroplakin [44-
46]. Studies involving targeted inactivation of FimH 
adhesin conducted in human and mouse models 
have shown a significant reduction in the potential 
of UPEC strains to colonize the urinary tract [47-48]. 

 Besides type 1 fimbriae (mannose-dependent), E. 
coli also possesses type 2 fimbriae (mannose-resis-
tant), represented by P, S and Dr fimbriae.

P fimbriae
Similar to type 1, P fimbriae are also extracellularly 

located, however, they do not associate with D-man-
nose-containing receptors but exhibit specificity for 
glycosphingolipid-containing structures (α-D-galac-
topyranosyl-1,4-β-D-galactopyranoside) [49]. Such 
receptors are found on epithelial cells in the kidney 
and renal tubules [45, 50, 51]. This explains why P 
fimbriae are more frequently reported in cases of 
ascending UTIs and pyelonephritis (61 - 91%), and 
much less frequently in cases of UTIs (< 30%) or in 
E. coli, representatives of the normal gut microbiota 
[33, 50, 53-58]. Some authors also report P fimbriae 
particularly strongly associated with pyelonephritis 
in childhood [52, 53, 55, 59].

The P fimbriae are encoded by the pap operon 
(papIBAHCDJKEFG), which contains structural (papA, 
papJ, papG) and regulatory genes (papI, papB) [41, 
60]. The papG gene encodes the terminal PapG pro-
tein directly responsible for the adhesion process 
[58]. Based on its specificity, PapG exists in four vari-
ants (PapI, PapII, PapIII, PapIV), with PapII being the 
most common among UPEC strains [58, 60].

It was also found that nonpathogenic E. coli iso-
lates, acquiring the pap operon, also acquire the abil-
ity to colonize kidney tissue [58].

S fimbriae
S fimbriae are adhesins that are encoded by the sfa 

operon [61, 62]. They exhibit specificity for aCapsule
In E. coli, more than 100 capsular polysaccharide 

antigens have been identified. The main function of 
the capsules is related to inhibition of phagocytosis 
and complement bactericidal activity [78]. The sim-
ilarity between some polysaccharide K antigens in 
UPEC and tissue structures in the host organism ex-
plains the antigen mimicry phenomenon and their 
difficult recognition by the immune system as foreign 

antigens [79]. On the other hand, the UPEC polysac-
charide capsule, coating the bacterial cell surface, 
can inhibit the adhesion process to the correspond-
ing epithelial cells. However, binding of type 1 fimbri-
ae to mannose-containing receptors has been shown 
to result in down-regulation of the kps operon, fol-
lowed by reduced production of capsular substance 
and thus aiding the adhesion process [80].

Extracellular virulence factors 
1. Toxins
Haemolysins
Hemolysin A (HlyA) and cytotoxic necrotizing factor 

1 (CNF1) of E. coli are the two main toxins responsi-
ble for bacterial tissue invasion and dissemination, as 
well as for the dysfunction of local immune respons-
es [32, 33].

HlyA is mainly associated with the destruction of 
host cells, thus releasing nutrients and other factors, 
such as iron, which are critical for bacterial growth. 
HlyA is a calcium-dependent toxin that in high con-
centrations forms pores in the cell membranes of the 
host organism leading to cell lysis. In low concentra-
tions, HlyA can induce apoptosis in the epithelial cell 
and thus promote the spread of infection [29, 81]. 
Encoded by the hlyCABD operon, the toxin is found 
in approximately 50% of UPEC [33, 82, 83] and its ex-
pression is associated with increased clinical severity 
of UTIs [47]. HlyA genes have been detected more 
frequently in patients with pyelonephritis (38%) than 
in those with cystitis (15%) [33]. 

HlyE is another toxin of the haemolysin group [84]. 
Its production and action are mediated by the cyto-
plasmic enzyme HlyF, which increases the formation 
of outer-membrane vesicles containing HlyE. The 
presence of hlyF in the UPEC genome is associated 
with more severe UTIs such as pyelonephritis accom-
panied by urosepsis and induction of an exacerbated 
inflammatory response, a specificity that distinguish-
es the hlyF positive strains from the typical UPEC [84-
86].

Cytotoxic necrotizing factor 1 (CNF1)
The effects of CNF1 are closely related to its ability 

to bind to specific cellular receptors (BCAM), inducing 
RHO GTPases activation, responsible for the control 
of multiple eukaryotic cell functions (actin structure 
formation, motility, phagocytosis, etc.) [87-90]. The 



38

Probl. Inf. Parasit. Dis.									                       Vol. 53, 2025, 2

CNF1 production is associated with the induction of 
apoptosis of bladder epithelial cells with subsequent 
exfoliation, with bacterial invasion and persistence, 
and involvement of new cells [47, 91, 92]. The genes 
encoding CNF1 have been documented in about 1/3 
of UPECs and are more frequent in uropathogenic 
than in commensal strains of E. coli [93, 94].

Other toxins
Spa (Serine protease autotransporter), Sat (Se-

creted autotransporter toxin) and Vat (Vacuolating 
autotransporter toxin) are also toxins found in UPEC 
associated with kidney injury. They exhibit cytotoxic 
activity against uroepithelium, cause vacuolization 
of renal glomeruli and tubules, exhibit marked pro-
teolytic effects against some complement factors, 
degrade mucin and promote the colonization stage 
[95-99]. 

2. Iron acquisition systems
Siderophores
Iron (Fe3+) is essential for life and proper function-

ing of all living organisms [100]. This element plays a 
key role in all essential processes in the bacterial cell, 
including the "virulence" behavior [101-103].

The human body uses several mechanisms to re-
strict pathogenic organisms' access to free iron: in 
tissues and cells, the iron is stored as ferritin, and in 
the blood, transferrin binds to iron with high affinity 
[104-106]. Stored as part of the heme (a cofactor of 
hemoglobin, myoglobin and cytochromes), the iron 
ions, are in a form inaccessible to microorganisms 
[101].

However, bacteria develop mechanisms that al-
low them to acquire iron from the host organism 
and thus survive and cause infections. The secretion 
of siderophores, iron-chelating molecules is such a 
mechanism. The siderophore high affinity for iron 
ions, especially trivalent iron (Fe3+), allows its cap-
ture by ferritin and transferrin [107-108]. After iron 
binding, the complex is recognized and transferred 
into the bacterial cell via specialized transport sys-
tems. This mechanism allows bacteria to obtain the 
necessary amount of iron even when its level in the 
organism is very low. Siderophores belong to 5 main 
classes - catechols (cateholates), phenols (pheno-
lates), hydroxamic acids, alpha-hydroxycarboxylates 

and a mixed type containing different siderophores 
[34]. E. coli has several siderophore systems - en-
terobactin and salmochelin (catechol siderophores), 
yersiniabactin (phenolate siderophore) and aero-
bactin (mixed type). Enterobactin is found in both 
pathogenic and non-pathogenic E. coli and its role 
in virulence is of less importance compared to oth-
er siderophore systems. One reason for this is that 
enterobactin can be inactivated by certain defense 
mechanisms of the host organism associated with 
the Lipocalin-2 protein [109]. On the other hand, 
the modification of this siderophore by glycosylation 
leads to the formation of salmochelins that manage 
to escape the action of Lipocalin-2 [110].

In contrast to enterobactin, the production of aer-
obactin, salmochelin and yersiniabactin has been 
demonstrated predominantly in UPEC and much less 
frequently in commensal E. coli   strains [8]. Aerobac-
tin is the most frequently studied siderophore system 
in uropathogenic E. coli and dominates as a survival 
mechanism [31, 111, 112]. Compared to enterobac-
tin, aerobactin is much more efficient in iron capture 
and even at very low concentrations can stimulate 
bacterial growth [108].

The siderophores salmochelin and yersiniabactin 
have also been attributed an important role in the 
pathogenesis of E. coli-associated UTIs. The expres-
sion of iroN, encoding the salmochelin-siderophore 
receptor IroN, is associated with a 5- to 10-fold in-
crease in the invasiveness in the urothelial cells 
[113]. Yersiniabactin has been attributed also to be 
important for biofilm production in E. coli and for the 
increased bacterial resistance to phagocytosis [108, 
114].

In addition to siderophores, UPECs use the Hma 
and ChuA transporters, which are involved in the iron 
uptake directly from extracellular heme [8, 108].  An-
other transporter type that also delivers iron to the 
interior of the bacterial cell is SitABCD [115].

Other extracellular virulence factors
Curli protein
Curli protein is an amyloid protein encoded by the 

csg gene and secreted by many bacterial species, 
including E. coli. This protein is involved in different 
processes, including biofilm production, in which 
curli is a major component, but also in the adhesion, 
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colonization, invasion and in the development of 
an inflammatory response mediated by the release 
of some cytokines (IL-6, IL-8, TNF-alpha) [116-117]. 
Curli protein is also involved in the intercellular inter-
action and communication under biofilm conditions 
[116-117].

Intracellular Bacterial Communities (IBCs)
A specific feature of UPEC is their ability to repro-

duce intracellularly [8, 118]. Only after adhesion to 
the urothelial cell, E. coli can enter the host cell and 
form mature IBCs as a result of active replication, 
followed by leaving the damaged cell, infecting new 
cells and spreading the infection [70, 119]. The pro-
cess of IBCs formation is accompanied by a change in 
bacterial cell morphology from coccoid to rod-shaped 
and filamentous shape [119]. IBCs are mediated ini-
tially by the FimH adhesin, related to type 1 fimbri-
ae, which recognizes specific receptors on bladder 
epithelial cells (uroplakin, integrin), followed by ac-
tivation of RHO GTPases and a process of bacterial 
endocytosis [120]. The E. coli capsular polysaccharide 
antigen contributes significantly to intracellular sur-
vival and IBCs formation [121].

The ability of UPEC to form IBCs is a mechanism to 
evade the host immune response [56]. It is thought 
that IBCs are a key mechanism for the development 
of E. coli UTIs [8], including recurrent UTIs [119]. The 
last are associated with the Quiescent Intracellular 
Compartments (QICs), located in cells of the under-
lying transitional epithelium, containing a small num-
ber of viable but non-replicating bacterial cells that 
can be re-activated [56, 122].

Biofilm production
In unfavorable living conditions bacterial biofilm 

production is an important survival mechanism. 
It protects the microbial cells from the innate de-
fense factors (complement, phagocytosis), specific 
(immune) defense mechanisms of the host organ-
ism and is among the most important antimicrobi-
al resistance mechanisms [123]. Biofilm production 
mediates microbial colonization of various medical 
devices, including urinary catheters, contributing to 
increased morbidity from both acute and chronic in-
fections [124].

Regarding UPEC, the biofilm production underlies 

the pathogenetic mechanism of UTIs and significant-
ly contributes to the UTIs persistence and recurrence 
and catheter-associated UTIs (CAUTIs), accounting 
for about 40% of all nosocomial infections [125-129]. 
It is biofilm formation that is one of the most import-
ant mechanisms determining the high levels of anti-
biotic resistance, often accompanying the UTIs [125, 
127, 130].

The biofilm is a 3D community of microbial cells 
embedded in a self-produced extracellular polymer-
ic substance attached to biological or non-biological 
surfaces [129, 131]. Under biofilm conditions, the 
bacterial population differs significantly from the 
free-living (planktonic) cell [130, 132]. Biofilm asso-
ciated bacteria reduce their motility and metabolic 
activity to conserve energy and nutrients [130, 132]. 
Besides protection, this viscous substance anchors 
the bacterial colony to the site of infection, and the 
increased release of extracellular bacterial toxins 
provides additional nutrient release at the site of in-
fection [133].      

According to the amount of biofilm secreted, 
strong, medium and weak biofilm producers are 
differentiated among UPEC.  The biofilm formation 
in E. coli is a complex process consisting of several 
sequential stages: a stage of reversible attachment; 
a stage of irreversible attachment and early biofilm 
development; biofilm maturation and a stage of bio-
film dispersal [123, 124]. During the first stage (the 
reversible attachment), which is typical for freely 
living bacterial (planktonic) cells, the flagella produc-
tion is particularly important. It ensures the cell mo-
tility and overcoming the hydrodynamic and van der 
Waals forces and thus mediates the attachment to 
the surface of epithelial cells or foreign bodies [124]. 
Catheters, stents or the rough stone surfaces are ide-
al for biofilm attachment [123]. In the reversible at-
tachment stage, two types of bacterial populations 
are found, those that can permanently form flagella 
and those in which the expression of genes encoding 
these structures is repressed [124].

When the bacterial cells find optimal conditions 
for a "sessile" lifestyle, the attachment becomes ir-
reversible, and the process is mediated by a diversity 
of microbial structures with adhesive function (type 
1 pili, F pili, curli, colanic acid) [134]. Besides to epi-
thelial cells and/or artificial surfaces, bacteria attach 
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to each other, which further strengthens and stabiliz-
es the structure, a process associated with the out-
er membrane protein Ag43 [135-136]. The type 1, P 
and S pili, the Dr and F1C adhesins are thought to be 
critical for biofilm formation, although various stud-
ies have shown different distribution of genes encod-
ing adhesins in E. coli biofilm producers [29; 57; 64, 
137-139]. A systematic review and meta-analysis on 
virulence factors among 1888 UPEC isolated from pa-
tients with UTIs over a 10-year period (2000 - 2019) 
showed a prevalence of CSH (80%) and fimH (75.3%) 
among the genes encoding the group of adhesive 
factors [140]. Tewawong's study also found the dom-
inance of fimH (91.8%) but also of pap genes (79.3%) 
and demonstrated a very high relative proportion 
of UPEC isolates carrying a combination of adhesins 
(80.3%), with the fimH + pap combination identified 
in 69% [141].

The inhibition of the irreversible attachment by an 
antibody-mediated mechanism or by downregula-
tion of pili-encoding genes, can dramatically reduce 
biofilm formation [45]. The cyclic-diguanylic acid 
(c-di-GMP), theconcentration oh which is increased 
at this early phase of biofilm development, is of great 
importance for the microbial transition from plank-
tonic to biofilm (sessile) form [117]. In addition, the 
attached bacterial cells actively replicate and increase 
in number, which is associated with the induction of 
the intercellular Quorum sensing (QS) communica-
tion system [123].

During the maturation a matrix substance is pro-
duced, and the biofilm is differentiated into a grow-
ing, well-structured 3D microbial community, with a 
defined architecture and spatial arrangement [124]. 
The mature biofilm is a dense structure, very difficult 
to eradicate [130, 142]. The main components of the 
matrix are water, exopolysaccharides, proteins, DNA 
and lipids [143]. It is the exopolysaccharide compo-
nent that is specific and distinguishes the microbial 
biofilm from the planktonic bacterial form [117]. The 
stability and the shape of the biofilm are primarily 
mediated by this component represented by poly-
β-1,6-N-acetyl-D-glucosamine, cellulose and colanic 
acid [129, 144-147]. The matrix polysaccharides are 
also involved in other processes: they contribute sig-
nificantly to the adhesion of the cells to each other 
and to various surfaces and host cells, provide pro-

tection against defense host factors, mediate resis-
tance to antimicrobials and to desiccation, act as a 
mechanical barrier and a reservoir of nutrients and 
mediate the interactions between bacterial cells 
[117, 143, 148, 149]. The cellulose production is spe-
cifically responsible for the formation of a rigid bio-
film, and the colanic acid forms a capsule around the 
bacterial cells, protecting them from adverse exter-
nal conditions. However, colanic acid can also inhibit 
biofilm formation, which is associated with masking 
of Ag43 and AidA [150]. In addition, by coating high-
ly immunogenic structures, exopolysaccharides (es-
pecially cellulose) significantly reduce the immune 
response against the pathogen [8]. Several authors 
have reported that increased production of this ma-
trix component is associated with the development 
of more severe and persistent UTIs [151-154].

Although with indirect effects, the LPS and the cap-
sular polysaccharides (O and K antigens) also contrib-
ute to biofilm formation. They mediate the interac-
tion between the bacterial cells and the environment 
and especially mediate the adhesion process through 
interaction with cell surface structures [155].

The matrix DNA and proteins are also involved in 
binding to and colonization of biotic and abiotic sur-
faces [143] and perform a variety of functions in the 
biofilm maturation stage (desiccation resistance, 
protection, nutrient supply, exchange of virulence 
factors, etc.) [143, 149, 156].

 Except the exopolysaccharides, the autotransport-
er proteins are critical for the biofilm maturation and 
intercellular interactions [155]. Antigen 43 (Ag43), a 
key autotransporter, mediates the adhesion of cells 
to one another, the processes of auto-aggregation 
and formation of the 3D biofilm structure. AidA and 
TibA proteins have a similar function [150]. 

Due to unfavorable living conditions in the biofilm 
during its final stage (scarce nutrients, low O2 concen-
tration, pH changes, accumulation of toxic products, 
and other stressful conditions), individual daughter 
cells detach from the biofilm, migrate, and adhere to 
adjacent, new surfaces [123, 157-160]. The process 
of active dispersion is mediated by proteins within 
the matrix, responsible for its enzymatic degradation 
[143, 161, 162]. Passive dispersion can also occur, but 
under external interference, including human influ-
ence [161].
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The transformation of E. coli from planktonic to 
biofilm form and vice versa is a complex process, 
whose regulation is strongly dependent on 3′,5′-cy-
clic diguanylic acid, the two-component CpxA/CpxR 
signaling system, the three-component protein reg-
ulatory system RcsCDB and quorum sensing [124]. 
The high level of 3′,5′-cyclic diguanylic acid blocks the 
flagellar proteins, resulting in motility loss. In addi-
tion, 3′,5′-cyclic diguanylic acid is involved in the cur-
li, cellulose and Poly-β-1,6-N-acetyl-D-glucosamine 
syntesis [163]. The CpxA/CpxR system also influences 
motility, and this effect is mediated by cell surface 
chemical composition changes via OmpC activation 
[164]. Additionally, CpxA/CpxR inhibits curli produc-
tion [165]. The RcsCDB system regulates the gene 
expression of structures associated with different 
functions - adhesive (Ag43, curli), mediating motility 
(flagella) and protection (capsules) [166].

Furthermore, during the process of biofilm forma-
tion in E. coli, multiple genes encoding stress toler-
ance, related to survival in adverse conditions and to 
biofilm protection are expressed. Products of such 
genes are the Hfq protein (promotes biofilm produc-
tion in adverse conditions), YcfR/BhsA (induces in-
dole production and makes biofilm resistant to acids, 
temperature and peroxide), AriR (an acid-resistance 
regulator protein associated with indole production), 
the sigma S factor (affects the expression of regulato-
ry and structural genes associated with biofilm pro-
duction and degradation) [168, 169].

Quorum sensing (QS)
QS is a bacterial communication system, mediated 

by the release of chemical signaling molecules called 
autoinducers or quormons, which allows bacteria to 
communicate and function as a multicellular organ-
ism, and coordinates their behavior [117, 169]. QS 
has a leading role on cell division control, bacterial 
movement, biofilm formation, upregulation of genes 
encoding virulence factors, as well as on the gene 
transfer between bacterial cells in the biofilm, and on 
the pathogen and host organism interactions through 
the immune response modulation [129, 136, 170-
172]. The QS system is dependent on the cell densi-
ty in the biofilm and coordinates bacterial behavior 
to maximize benefits to the microbial population in 
the biofilm, including optimal nutrient utilization, 

increased pathogenicity, and survival [173]. A mini-
mum population number threshold is required for 
QS activation [160]. An inducer-receptor mechanism 
associated with the QS system is involved in the gene 
control mechanisms [173-176]. The Gram-negative 
bacteria use N-acyl-homoserine lactones (AHLs)-as-
sociated inducers and their corresponding receptors 
(LuxRs) [177, 178]. At low biofilm cell density, the in-
ducers are secreted at very low, non-detectable lev-
els, but as the bacterial population increases, their 
amount is sufficient to bind to the corresponding 
receptors, forming complexes involved in the gene 
expression control [179-183]. AI-2 is one of the most 
important autoinducers, directly related to E. coli 
biofilm production. Upon reaching optimal bacterial 
density, AI-2 production is inhibited, a process, relat-
ed to luxS gene down-regulation [123, 171]. The AI-2 
effect of  increasing significantly the biofilm mass has 
been shown to be mediated by a specific QS motility 
regulator (MqsR) [172].

The biofilm in E. coli not only  successfully prevents 
most of the humoral and cellular defense mechanisms 
of the host, but also through various mechanisms can 
render bacterial cells in the biofilm up to 1000-fold 
more resistant to antimicrobials than the planktonic 
forms [124]. The weak penetration of antibiotics in 
the biofilm-related bacteria, mediated by the matrix 
substance as a physical barrier and by other biofilm 
components such as polysaccharides, enzymes and 
DNA, binding or degrading the antimicrobial agents, 
is one of the most important mechanisms [185-187]. 
Another factor contributing to high antimicrobial re-
sistance in biofilm conditions are the bacterial cells 
of  "persister” phenotype, found in the biofilm, which 
are characterized by a very slow growth. Once the ac-
tion of the antibiotic agent is discontinued, microbial 
cells with this phenotype can reactivate and cause 
infection [186, 188]. The presence of "persister cells" 
is associated with the chronic course of some UTIs 
[187]. Furthermore, the over-expression of some ef-
flux pumps under biofilm conditions [187, 189], as 
well as high levels of horizontal gene transfer due to 
over-population and close physical contact between 
bacterial cells [124, 190], also contribute significantly 
to E. coli antimicrobial resistance and to the spread-
ing of genetic resistance and virulence determinants 
under biofilm conditions.
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In conclusion, E. coli is a well-studied enteric organ-
ism with a potential to cause many different types 
of infectious syndromes, among which the UTIs are 
most common. Apart from being able to become 
resistant to routinely used and strategic antimicrobi-
als, this organism is also capable of harboring a wide 
range of genes, associated with increased virulence. 
In combination with the high frequency and severi-
ty of E. coli infections, and the related mortality, this 
places E. coli among the bacterial pathogens of high-
est public health importance.
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