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ABSTRACT

Urinary tract infections (UTls) are the most com-
mon type of infections second only to respiratory
tract infections. Millions of UTI cases are reported
each vyear, affecting in- and outpatients. The most
frequent causative agents of UTIs are the enteric
Gram-negative bacteria, among which Escherichia
coli (E. coli) dominates. While most strains of E. coli
are harmless and indeed play a beneficial role in gut
health, some strains (uropathogenic Escherichia coli,
UPEC) can cause infections when they are translocat-
ed to generally sterile body areas, such as the urinary
tract.

This review presents the wide range of virulence
factors of UPEC, involved in the urinary tract coloniza-
tion, infection development and host tissue invasion.
Cell-associated and extracellular key virulence factors
such as adhesins, invasins, iron acquisition factors,
factors mediating serum resistance, toxins and struc-
tural components are discussed in detail. Also, the
review focuses on the process of biofilm formation,
another crucial virulence factor in UPEC, responsible
for UTI persistence, reoccurrence and antimicrobial
therapy failure. The regulatory mechanisms involved
in biofilm production are also discussed.
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Escherichia coli (E. coli) is a Gram-negative bacterial
species, a member of the order Enterobacterales. It
is an opportunistic organism, part of the human mi-
crobiota, with the potential to cause intestinal and
extraintestinal infections, including severe invasive
complications [1]. Members of the species belong
to several phylogenetic groups, A, B1, B2, C, D, E, F
and clade | [2, 3]. Nonpathogenic strains of E. coli are
most commonly from A and B1 groups, while those
causing extraintestinal infections are usually assigned
to B2 and D groups [4, 5]. Extraintestinal pathogenic
E. coli (EXPEC) can cause a variety of infections usual-
ly associated with penetration in primary sterile ana-
tomical areas or with severely immunocompromised
patients. The EXPEC group is currently represented by
UPEC (uropathogenic E. coli), NMEC (neonatal men-
ingitis-associated E. coli), SEPEC (sepsis-associated E.
coli) and AREC (avian pathogenic E. coli) [4, 5].

Urinary tract infections (UTIs) are among the most
common bacterial infections in both community and
hospital settings, with over 150 million cases diag-
nosed annually worldwide [6]. In over 80%, UTIs are
associated with E. coli [7]. Most UTls are caused by
the highly heterogeneous UPEC group. UPEC strains
due to their multiple virulence factors, usually en-
coded on pathogenicity islands, plasmids and other
mobile genetic elements, migrate from the intestinal
tract, colonize the urinary tract and cause different
types of UTls [4, 5]. The virulence factors related to
UTls pathogenesis are extremely diverse and serve
different functions (adhesins, invasins, iron acqui-
sition factors, factors mediating serum resistance,
toxins, structural components and etc.) [8]. They are
divided into two major groups - cell-associated and
extracellular virulence factors.

Cell-associated virulence factors

1. Outer membrane: lipopolysaccharides and pro-
teins

Lipopolysaccharides

Lipopolysaccharides (LPS) are a major component
of the outer membrane of E. coli. Due to strong im-
munogenicity, they play a key role in the activation
of host immune system. LPS are composed of lipid A,
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responsible for the toxicity of the structure, R antigen
and the O antigen, which is the major bacterial so-
matic antigen [9]. Based on the O antigen specificity,
there are more than 180 different E. coli serotypes,
with UPEC belonging mainly to 01, 02, 04, 06, O7,
08, 014, 015, 016, 018, 021, 022, 025, 075 and
083 [10-15]. Amongst them, there is an E. coli sub-
type, which belongs to 025 serogroup and a widely
spread and hypervirulent sequence type 131 —E. coli
025b/ST131. Itis often associated with UTIs and sub-
sequent complications such as sepsis. Furthermore,
the majority of the isolates are multidrug-resistant
and render the therapy with beta-lactams, fluoro-
quinolones and aminoglycosides ineffective [3]. Typi-
cally, uropathogenic serotypes of E. coli have the abil-
ity to inhibit the induction of certain cytokines in the
epithelial cells, specifically IL-6 and IL-8 [16, 17]. In
addition, the resistance to serum bactericidal effect
(serum resistance) is also associated with specific O
antigens typical for UPEC (06, 08) [18].

Outer membrane proteins

Outer membrane protein A (OmpA) is one of the
major outer membrane proteins of E. coli. It is as-
sociated with multiple structural and physiological
functions, including maintenance of the cell shape
and stability, biofilm formation, adhesion, colicins,
bacteriophages receptor and F-dependent conjuga-
tion [19]. OmpA has been documented in all ExPEC
strains [20]. It is believed that OmpA plays a key role
in the intracellular bacterial colony formation and
long-term persistence of E. coli in the bladder [21].
Another important outer membrane protein is asso-
ciated with the traT gene — a transfer surface exclu-
sion lipoprotein, which confers serum resistance and
prevents bacterial death [3].

2. Flagella

E. coli is a motile organism with motility, mediat-
ed by peritrichial flagella. These surface structures,
composed of the protein flagellin, are of particular
importance for the UPEC virulence. The flagella are
directly related to the bacterial cell adhesion and col-
onization of the urinary tract and biofilm production
during the course of the UTI [22, 23]. A direct link has
been demonstrated between the flagella production
and the fimbriae production in UPEC strains, and the
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regulation of expression of these structures are high-
ly linked and coordinated [24]. This is mediated by
the Pap X repressor localized in the P fimbrial operon
of UPEC, with Pap X overexpression leading to inhibi-
tion of the flhDC gene and to a reduction in flagella
production and respectively to decreasing the bacte-
rial cell motility [25, 26].

3. Adhesive structures

The bacterial attachment to the uroepithelial cell is
critical for the onset and subsequent development of
UTI [27]. The ability of E. coli to adhere to the uroepi-
thelium, to resist to urinary flashing and colonize the
urinary tract is associated with the expression of spe-
cific adhesins. These thin and extracellularly located
protein filamentous organelles are called fimbriae or
pili. The loss of the ability of bacterial cell to attach to
and, respectively to colonize the anatomic region by
adhesin-mediated recognition of specific receptors is
often sufficient to render it avirulent [28]. Of note,
adhesive structures (type 1, P, S fimbriae) mediate
both the bacterial cell attachment process and cyto-
kine production by T-lymphocytes, play an important
role in tissue invasion and inflammation [29, 30].

Type 1 fimbriae, P, S and F1C fimbriae and some
afimbrial adhesins are the most common adhesion
factors found in UPEC [31-33]. They occur more fre-
quently in UPEC than in commensal strains of E. coli
[34].

Type 1 fimbriae

Type 1 fimbriae are extremely prevalent among
both UPEC (86-100%) and commensal isolates [35-
37]. They are considered to be one of the most im-
portant and critical virulence factors [38]. Type 1 fim-
briae are encoded by the highly conserved fim operon
including 9 genes (fimA, B, C, D, E, F, G, H, |) and its
expression is under phase variation control [39, 40].
Products of the fim operon are structural (FimA, Fiml,
FimF, FimG), adhesion (FimH) and regulatory proteins
(FimB, FimE) [41]. The fimH gene mediates the bind-
ing of the fimbriae via the FimH adhesin, located at
the end of the structure, to specific D-mannose-con-
taining receptors, found mainly on epithelial cells of
the lower urinary tract and less in the renal paren-
chyma [42, 43]. An additional function of type 1 pili,
particularly in cases of pyelonephritis, is to aid bio-
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film formation by binding to urothelial uroplakin [44-
46]. Studies involving targeted inactivation of FimH
adhesin conducted in human and mouse models
have shown a significant reduction in the potential
of UPEC strains to colonize the urinary tract [47-48].

Besides type 1 fimbriae (mannose-dependent), E.
coli also possesses type 2 fimbriae (mannose-resis-
tant), represented by P, S and Dr fimbriae.

P fimbriae

Similar to type 1, P fimbriae are also extracellularly
located, however, they do not associate with D-man-
nose-containing receptors but exhibit specificity for
glycosphingolipid-containing structures (a-D-galac-
topyranosyl-1,4-B-D-galactopyranoside) [49]. Such
receptors are found on epithelial cells in the kidney
and renal tubules [45, 50, 51]. This explains why P
fimbriae are more frequently reported in cases of
ascending UTIs and pyelonephritis (61 - 91%), and
much less frequently in cases of UTIs (< 30%) or in
E. coli, representatives of the normal gut microbiota
[33, 50, 53-58]. Some authors also report P fimbriae
particularly strongly associated with pyelonephritis
in childhood [52, 53, 55, 59].

The P fimbriae are encoded by the pap operon
(papIBAHCDJKEFG), which contains structural (papA,
papJ, papG) and regulatory genes (papl, papB) [41,
60]. The papG gene encodes the terminal PapG pro-
tein directly responsible for the adhesion process
[58]. Based on its specificity, PapG exists in four vari-
ants (Papl, Papll, Paplll, PaplV), with Papll being the
most common among UPEC strains [58, 60].

It was also found that nonpathogenic E. coli iso-
lates, acquiring the pap operon, also acquire the abil-
ity to colonize kidney tissue [58].

S fimbriae

S fimbriae are adhesins that are encoded by the sfa
operon [61, 62]. They exhibit specificity for aCapsule

In E. coli, more than 100 capsular polysaccharide
antigens have been identified. The main function of
the capsules is related to inhibition of phagocytosis
and complement bactericidal activity [78]. The sim-
ilarity between some polysaccharide K antigens in
UPEC and tissue structures in the host organism ex-
plains the antigen mimicry phenomenon and their
difficult recognition by the immune system as foreign

antigens [79]. On the other hand, the UPEC polysac-
charide capsule, coating the bacterial cell surface,
can inhibit the adhesion process to the correspond-
ing epithelial cells. However, binding of type 1 fimbri-
ae to mannose-containing receptors has been shown
to result in down-regulation of the kps operon, fol-
lowed by reduced production of capsular substance
and thus aiding the adhesion process [80].

Extracellular virulence factors

1. Toxins

Haemolysins

Hemolysin A (HlyA) and cytotoxic necrotizing factor
1 (CNF1) of E. coli are the two main toxins responsi-
ble for bacterial tissue invasion and dissemination, as
well as for the dysfunction of local immune respons-
es [32, 33].

HIyA is mainly associated with the destruction of
host cells, thus releasing nutrients and other factors,
such as iron, which are critical for bacterial growth.
HIyA is a calcium-dependent toxin that in high con-
centrations forms pores in the cell membranes of the
host organism leading to cell lysis. In low concentra-
tions, HIyA can induce apoptosis in the epithelial cell
and thus promote the spread of infection [29, 81].
Encoded by the hlyCABD operon, the toxin is found
in approximately 50% of UPEC [33, 82, 83] and its ex-
pression is associated with increased clinical severity
of UTIs [47]. HIyA genes have been detected more
frequently in patients with pyelonephritis (38%) than
in those with cystitis (15%) [33].

HIYE is another toxin of the haemolysin group [84].
Its production and action are mediated by the cyto-
plasmic enzyme HIyF, which increases the formation
of outer-membrane vesicles containing HIyE. The
presence of hlyF in the UPEC genome is associated
with more severe UTIs such as pyelonephritis accom-
panied by urosepsis and induction of an exacerbated
inflammatory response, a specificity that distinguish-
es the hlyF positive strains from the typical UPEC [84-
86].

Cytotoxic necrotizing factor 1 (CNF1)

The effects of CNF1 are closely related to its ability
to bind to specific cellular receptors (BCAM), inducing
RHO GTPases activation, responsible for the control
of multiple eukaryotic cell functions (actin structure
formation, motility, phagocytosis, etc.) [87-90]. The
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CNF1 production is associated with the induction of
apoptosis of bladder epithelial cells with subsequent
exfoliation, with bacterial invasion and persistence,
and involvement of new cells [47, 91, 92]. The genes
encoding CNF1 have been documented in about 1/3
of UPECs and are more frequent in uropathogenic
than in commensal strains of E. coli [93, 94].

Other toxins

Spa (Serine protease autotransporter), Sat (Se-
creted autotransporter toxin) and Vat (Vacuolating
autotransporter toxin) are also toxins found in UPEC
associated with kidney injury. They exhibit cytotoxic
activity against uroepithelium, cause vacuolization
of renal glomeruli and tubules, exhibit marked pro-
teolytic effects against some complement factors,
degrade mucin and promote the colonization stage
[95-99].

2. Iron acquisition systems

Siderophores

Iron (Fe*) is essential for life and proper function-
ing of all living organisms [100]. This element plays a
key role in all essential processes in the bacterial cell,
including the "virulence" behavior [101-103].

The human body uses several mechanisms to re-
strict pathogenic organisms' access to free iron: in
tissues and cells, the iron is stored as ferritin, and in
the blood, transferrin binds to iron with high affinity
[104-106]. Stored as part of the heme (a cofactor of
hemoglobin, myoglobin and cytochromes), the iron
ions, are in a form inaccessible to microorganisms
[101].

However, bacteria develop mechanisms that al-
low them to acquire iron from the host organism
and thus survive and cause infections. The secretion
of siderophores, iron-chelating molecules is such a
mechanism. The siderophore high affinity for iron
ions, especially trivalent iron (Fe*), allows its cap-
ture by ferritin and transferrin [107-108]. After iron
binding, the complex is recognized and transferred
into the bacterial cell via specialized transport sys-
tems. This mechanism allows bacteria to obtain the
necessary amount of iron even when its level in the
organism is very low. Siderophores belong to 5 main
classes - catechols (cateholates), phenols (pheno-
lates), hydroxamic acids, alpha-hydroxycarboxylates
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and a mixed type containing different siderophores
[34]. E. coli has several siderophore systems - en-
terobactin and salmochelin (catechol siderophores),
yersiniabactin (phenolate siderophore) and aero-
bactin (mixed type). Enterobactin is found in both
pathogenic and non-pathogenic E. coli and its role
in virulence is of less importance compared to oth-
er siderophore systems. One reason for this is that
enterobactin can be inactivated by certain defense
mechanisms of the host organism associated with
the Lipocalin-2 protein [109]. On the other hand,
the modification of this siderophore by glycosylation
leads to the formation of salmochelins that manage
to escape the action of Lipocalin-2 [110].

In contrast to enterobactin, the production of aer-
obactin, salmochelin and yersiniabactin has been
demonstrated predominantly in UPEC and much less
frequently in commensal E. coli strains [8]. Aerobac-
tin is the most frequently studied siderophore system
in uropathogenic E. coli and dominates as a survival
mechanism [31, 111, 112]. Compared to enterobac-
tin, aerobactin is much more efficient in iron capture
and even at very low concentrations can stimulate
bacterial growth [108].

The siderophores salmochelin and yersiniabactin
have also been attributed an important role in the
pathogenesis of E. coli-associated UTIs. The expres-
sion of iroN, encoding the salmochelin-siderophore
receptor IroN, is associated with a 5- to 10-fold in-
crease in the invasiveness in the urothelial cells
[113]. Yersiniabactin has been attributed also to be
important for biofilm production in E. coli and for the
increased bacterial resistance to phagocytosis [108,
114].

In addition to siderophores, UPECs use the Hma
and ChuA transporters, which are involved in the iron
uptake directly from extracellular heme [8, 108]. An-
other transporter type that also delivers iron to the
interior of the bacterial cell is SitABCD [115].

Other extracellular virulence factors

Curli protein

Curli protein is an amyloid protein encoded by the
csg gene and secreted by many bacterial species,
including E. coli. This protein is involved in different
processes, including biofilm production, in which
curli is a major component, but also in the adhesion,
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colonization, invasion and in the development of
an inflammatory response mediated by the release
of some cytokines (IL-6, IL-8, TNF-alpha) [116-117].
Curli protein is also involved in the intercellular inter-
action and communication under biofilm conditions
[116-117].

Intracellular Bacterial Communities (IBCs)

A specific feature of UPEC is their ability to repro-
duce intracellularly [8, 118]. Only after adhesion to
the urothelial cell, E. coli can enter the host cell and
form mature IBCs as a result of active replication,
followed by leaving the damaged cell, infecting new
cells and spreading the infection [70, 119]. The pro-
cess of IBCs formation is accompanied by a change in
bacterial cell morphology from coccoid to rod-shaped
and filamentous shape [119]. IBCs are mediated ini-
tially by the FimH adhesin, related to type 1 fimbri-
ae, which recognizes specific receptors on bladder
epithelial cells (uroplakin, integrin), followed by ac-
tivation of RHO GTPases and a process of bacterial
endocytosis [120]. The E. coli capsular polysaccharide
antigen contributes significantly to intracellular sur-
vival and IBCs formation [121].

The ability of UPEC to form IBCs is a mechanism to
evade the host immune response [56]. It is thought
that IBCs are a key mechanism for the development
of E. coli UTls [8], including recurrent UTIs [119]. The
last are associated with the Quiescent Intracellular
Compartments (QICs), located in cells of the under-
lying transitional epithelium, containing a small num-
ber of viable but non-replicating bacterial cells that
can be re-activated [56, 122].

Biofilm production

In unfavorable living conditions bacterial biofilm
production is an important survival mechanism.
It protects the microbial cells from the innate de-
fense factors (complement, phagocytosis), specific
(immune) defense mechanisms of the host organ-
ism and is among the most important antimicrobi-
al resistance mechanisms [123]. Biofilm production
mediates microbial colonization of various medical
devices, including urinary catheters, contributing to
increased morbidity from both acute and chronic in-
fections [124].

Regarding UPEC, the biofilm production underlies

the pathogenetic mechanism of UTIs and significant-
ly contributes to the UTIs persistence and recurrence
and catheter-associated UTIs (CAUTIs), accounting
for about 40% of all nosocomial infections [125-129].
It is biofilm formation that is one of the most import-
ant mechanisms determining the high levels of anti-
biotic resistance, often accompanying the UTIs [125,
127, 130].

The biofilm is a 3D community of microbial cells
embedded in a self-produced extracellular polymer-
ic substance attached to biological or non-biological
surfaces [129, 131]. Under biofilm conditions, the
bacterial population differs significantly from the
free-living (planktonic) cell [130, 132]. Biofilm asso-
ciated bacteria reduce their motility and metabolic
activity to conserve energy and nutrients [130, 132].
Besides protection, this viscous substance anchors
the bacterial colony to the site of infection, and the
increased release of extracellular bacterial toxins
provides additional nutrient release at the site of in-
fection [133].

According to the amount of biofilm secreted,
strong, medium and weak biofilm producers are
differentiated among UPEC. The biofilm formation
in E. coli is a complex process consisting of several
sequential stages: a stage of reversible attachment;
a stage of irreversible attachment and early biofilm
development; biofilm maturation and a stage of bio-
film dispersal [123, 124]. During the first stage (the
reversible attachment), which is typical for freely
living bacterial (planktonic) cells, the flagella produc-
tion is particularly important. It ensures the cell mo-
tility and overcoming the hydrodynamic and van der
Waals forces and thus mediates the attachment to
the surface of epithelial cells or foreign bodies [124].
Catheters, stents or the rough stone surfaces are ide-
al for biofilm attachment [123]. In the reversible at-
tachment stage, two types of bacterial populations
are found, those that can permanently form flagella
and those in which the expression of genes encoding
these structures is repressed [124].

When the bacterial cells find optimal conditions
for a "sessile" lifestyle, the attachment becomes ir-
reversible, and the process is mediated by a diversity
of microbial structures with adhesive function (type
1 pili, F pili, curli, colanic acid) [134]. Besides to epi-
thelial cells and/or artificial surfaces, bacteria attach
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to each other, which further strengthens and stabiliz-
es the structure, a process associated with the out-
er membrane protein Ag43 [135-136]. The type 1, P
and S pili, the Dr and F1C adhesins are thought to be
critical for biofilm formation, although various stud-
ies have shown different distribution of genes encod-
ing adhesins in E. coli biofilm producers [29; 57; 64,
137-139]. A systematic review and meta-analysis on
virulence factors among 1888 UPEC isolated from pa-
tients with UTIs over a 10-year period (2000 - 2019)
showed a prevalence of CSH (80%) and fimH (75.3%)
among the genes encoding the group of adhesive
factors [140]. Tewawong's study also found the dom-
inance of fimH (91.8%) but also of pap genes (79.3%)
and demonstrated a very high relative proportion
of UPEC isolates carrying a combination of adhesins
(80.3%), with the fimH + pap combination identified
in 69% [141].

The inhibition of the irreversible attachment by an
antibody-mediated mechanism or by downregula-
tion of pili-encoding genes, can dramatically reduce
biofilm formation [45]. The cyclic-diguanylic acid
(c-di-GMP), theconcentration oh which is increased
at this early phase of biofilm development, is of great
importance for the microbial transition from plank-
tonic to biofilm (sessile) form [117]. In addition, the
attached bacterial cells actively replicate and increase
in number, which is associated with the induction of
the intercellular Quorum sensing (QS) communica-
tion system [123].

During the maturation a matrix substance is pro-
duced, and the biofilm is differentiated into a grow-
ing, well-structured 3D microbial community, with a
defined architecture and spatial arrangement [124].
The mature biofilm is a dense structure, very difficult
to eradicate [130, 142]. The main components of the
matrix are water, exopolysaccharides, proteins, DNA
and lipids [143]. It is the exopolysaccharide compo-
nent that is specific and distinguishes the microbial
biofilm from the planktonic bacterial form [117]. The
stability and the shape of the biofilm are primarily
mediated by this component represented by poly-
B-1,6-N-acetyl-D-glucosamine, cellulose and colanic
acid [129, 144-147]. The matrix polysaccharides are
also involved in other processes: they contribute sig-
nificantly to the adhesion of the cells to each other
and to various surfaces and host cells, provide pro-
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tection against defense host factors, mediate resis-
tance to antimicrobials and to desiccation, act as a
mechanical barrier and a reservoir of nutrients and
mediate the interactions between bacterial cells
[117, 143, 148, 149]. The cellulose production is spe-
cifically responsible for the formation of a rigid bio-
film, and the colanic acid forms a capsule around the
bacterial cells, protecting them from adverse exter-
nal conditions. However, colanic acid can also inhibit
biofilm formation, which is associated with masking
of Ag43 and AidA [150]. In addition, by coating high-
ly immunogenic structures, exopolysaccharides (es-
pecially cellulose) significantly reduce the immune
response against the pathogen [8]. Several authors
have reported that increased production of this ma-
trix component is associated with the development
of more severe and persistent UTIs [151-154].

Although with indirect effects, the LPS and the cap-
sular polysaccharides (O and K antigens) also contrib-
ute to biofilm formation. They mediate the interac-
tion between the bacterial cells and the environment
and especially mediate the adhesion process through
interaction with cell surface structures [155].

The matrix DNA and proteins are also involved in
binding to and colonization of biotic and abiotic sur-
faces [143] and perform a variety of functions in the
biofilm maturation stage (desiccation resistance,
protection, nutrient supply, exchange of virulence
factors, etc.) [143, 149, 156].

Except the exopolysaccharides, the autotransport-
er proteins are critical for the biofilm maturation and
intercellular interactions [155]. Antigen 43 (Ag43), a
key autotransporter, mediates the adhesion of cells
to one another, the processes of auto-aggregation
and formation of the 3D biofilm structure. AidA and
TibA proteins have a similar function [150].

Due to unfavorable living conditions in the biofilm
during its final stage (scarce nutrients, low O, concen-
tration, pH changes, accumulation of toxic products,
and other stressful conditions), individual daughter
cells detach from the biofilm, migrate, and adhere to
adjacent, new surfaces [123, 157-160]. The process
of active dispersion is mediated by proteins within
the matrix, responsible for its enzymatic degradation
[143, 161, 162]. Passive dispersion can also occur, but
under external interference, including human influ-
ence [161].
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The transformation of E. coli from planktonic to
biofilm form and vice versa is a complex process,
whose regulation is strongly dependent on 3',5'-cy-
clic diguanylic acid, the two-component CpxA/CpxR
signaling system, the three-component protein reg-
ulatory system RcsCDB and quorum sensing [124].
The high level of 3',5I—cyclic diguanylic acid blocks the
flagellar proteins, resulting in motility loss. In addi-
tion, 31,5'—cyclic diguanylic acid is involved in the cur-
li, cellulose and Poly-B-1,6-N-acetyl-D-glucosamine
syntesis [163]. The CpxA/CpxR system also influences
motility, and this effect is mediated by cell surface
chemical composition changes via OmpC activation
[164]. Additionally, CpxA/CpxR inhibits curli produc-
tion [165]. The RcsCDB system regulates the gene
expression of structures associated with different
functions - adhesive (Ag43, curli), mediating motility
(flagella) and protection (capsules) [166].

Furthermore, during the process of biofilm forma-
tion in E. coli, multiple genes encoding stress toler-
ance, related to survival in adverse conditions and to
biofilm protection are expressed. Products of such
genes are the Hfq protein (promotes biofilm produc-
tion in adverse conditions), YcfR/BhsA (induces in-
dole production and makes biofilm resistant to acids,
temperature and peroxide), AriR (an acid-resistance
regulator protein associated with indole production),
the sigma S factor (affects the expression of regulato-
ry and structural genes associated with biofilm pro-
duction and degradation) [168, 169].

Quorum sensing (QS)

QS is a bacterial communication system, mediated
by the release of chemical signaling molecules called
autoinducers or quormons, which allows bacteria to
communicate and function as a multicellular organ-
ism, and coordinates their behavior [117, 169]. QS
has a leading role on cell division control, bacterial
movement, biofilm formation, upregulation of genes
encoding virulence factors, as well as on the gene
transfer between bacterial cells in the biofilm, and on
the pathogen and host organism interactions through
the immune response modulation [129, 136, 170-
172]. The QS system is dependent on the cell densi-
ty in the biofilm and coordinates bacterial behavior
to maximize benefits to the microbial population in
the biofilm, including optimal nutrient utilization,

increased pathogenicity, and survival [173]. A mini-
mum population number threshold is required for
QS activation [160]. An inducer-receptor mechanism
associated with the QS system is involved in the gene
control mechanisms [173-176]. The Gram-negative
bacteria use N-acyl-homoserine lactones (AHLs)-as-
sociated inducers and their corresponding receptors
(LuxRs) [177, 178]. At low biofilm cell density, the in-
ducers are secreted at very low, non-detectable lev-
els, but as the bacterial population increases, their
amount is sufficient to bind to the corresponding
receptors, forming complexes involved in the gene
expression control [179-183]. Al-2 is one of the most
important autoinducers, directly related to E. coli
biofilm production. Upon reaching optimal bacterial
density, Al-2 production is inhibited, a process, relat-
ed to luxS gene down-regulation [123, 171]. The Al-2
effect of increasing significantly the biofilm mass has
been shown to be mediated by a specific QS motility
regulator (MqgsR) [172].

The biofilm in E. coli not only successfully prevents
most of the humoral and cellular defense mechanisms
of the host, but also through various mechanisms can
render bacterial cells in the biofilm up to 1000-fold
more resistant to antimicrobials than the planktonic
forms [124]. The weak penetration of antibiotics in
the biofilm-related bacteria, mediated by the matrix
substance as a physical barrier and by other biofilm
components such as polysaccharides, enzymes and
DNA, binding or degrading the antimicrobial agents,
is one of the most important mechanisms [185-187].
Another factor contributing to high antimicrobial re-
sistance in biofilm conditions are the bacterial cells
of "persister” phenotype, found in the biofilm, which
are characterized by a very slow growth. Once the ac-
tion of the antibiotic agent is discontinued, microbial
cells with this phenotype can reactivate and cause
infection [186, 188]. The presence of "persister cells"
is associated with the chronic course of some UTls
[187]. Furthermore, the over-expression of some ef-
flux pumps under biofilm conditions [187, 189], as
well as high levels of horizontal gene transfer due to
over-population and close physical contact between
bacterial cells [124, 190], also contribute significantly
to E. coli antimicrobial resistance and to the spread-
ing of genetic resistance and virulence determinants
under biofilm conditions.
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In conclusion, E. coli is a well-studied enteric organ-

ism with a potential to cause many different types

of infectious syndromes, among which the UTIs are

most common. Apart from being able to become

resistant to routinely used and strategic antimicrobi-

als,

this organism is also capable of harboring a wide

range of genes, associated with increased virulence.

In combination with the high frequency and severi-

ty of E. coli infections, and the related mortality, this

places E. coli among the bacterial pathogens of high-

est public health importance.
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