A REVIEW OF MEASLES VIRUS

Authors

  • Ivona Danova NCIPD Author

DOI:

https://doi.org/10.58395/pipd.v49i2.69

Keywords:

measles virus, morphology, diagnosis, epidemiology, elimination

Abstract

Measles is a highly contagious, acute febrile illness that results from infection with measles virus (MV). MV is a single-stranded, negative-sense RNA virus in the genus Morbillivirus of the family Paramyxoviridae. The wild-type MV consists of 24 genotypes, three of them (B3, D8 an H1) have dominated circulation in the world. MV is transmitted by the respiratory route and illness begins with fever, cough, conjunctivitis followed by a rash and measles enanthem (Koplik spot). Laboratory confirmation of measles is provided by  serological (ELISA test for detection of IgM and IgG antibodies), molecular (detection of viral nucleic acid) and viral isolation in Vero/hSLAM cells methods. As a vaccine-preventable infection, measles has a global importance and is a target of WHO strategic goals in the  European region. Despite significant progress in measles control in recent years, it is necessary to improve the national vaccination  coverage, and the epidemiological and laboratory monitoring of the infection. High vaccination coverage across all of the population is  crucial to reach the goals of measles elimination.

Downloads

Download data is not yet available.

References

Murphy F., Fauquet C., Bishop D., Ghabrial S., Jarvis A., Martelli G., Mayo T., Summers M. Virus taxonomy, 6th report of the International Committee on Taxonomy of Viruses (ICTV). Arch Virol., (1995), S10:1–586 DOI: https://doi.org/10.1007/978-3-7091-6607-9_1

https://talk.ictvonline.org

Simons, E.; Ferrari, M.; Fricks, J.; Wannemuehler, K.; Anand, A.; Burton, A.; Strebel, P. Assessment of the 2010 global measles mortality reduction goal: Results from a model of surveillance data. Lancet 2012, 379, 2173–2178. DOI: https://doi.org/10.1016/S0140-6736(12)60522-4

https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/mononegavirales/w/paramyxoviridae/1183/genus-morbillivirus

Manual for the laboratory diagnosis of measles and rubella virus infection - Second edition. World Health Organization (2007).

Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses.Prog Mol Biol Transl Sci. 2015; 129():1-32. DOI: https://doi.org/10.1016/bs.pmbts.2014.10.001

Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Analysis of the Noncoding Regions of Measles Virus Strains in the Edmonston Vaccine Lineage. Journal of Virology. 2001; 75(2):921-933. DOI: https://doi.org/10.1128/JVI.75.2.921-933.2001

S Longhi. Nucleocapsid structure and function. Current Topics in Microbiology and Immunology , 2009;329:103-28. DOI: https://doi.org/10.1007/978-3-540-70523-9_6

Serafima Guseva, Sigrid Milles, Martin Blackledge,* and Rob W. H. Ruigrok*. The Nucleoprotein and Phosphoprotein of Measles Virus. Front Microbiol. 2019; 10: 1832. DOI: https://doi.org/10.3389/fmicb.2019.01832

Bellini, WJ, Rota PA. Genetic Diversity of Wild-Type Measles Viruses: Implication for Global Measles Elimination Programs. Inf. Dis. 1998; 4 (1) 29-35 DOI: https://doi.org/10.3201/eid0401.980105

Ji, Y., Xu, S., and Zhang, Y. et al. Genetic Characterization of wild-type measles viruses isolated in China 2006-2007. Virology Journal; (2010) ,7(105) DOI: https://doi.org/10.1186/1743-422X-7-105

World Health Organization. Update of standard nomenclature for wild-type measles and rubella viruses 2007. Weekly Epidemiological Record; (2007) 82 (24): 216–222.

World Health Organization. (2009b) Manual for the Laboratory Diagnosis of Measles and Rubella Virus Infection, 2nd Edition. World Health organization, Geneva

Paul A. Rota, William J. Moss, Makoto Takeda, Rik L. de Swart ,Kimberly M. Thompson and James L. Goodson. Nature Reviews/Disease Primers, (2016), Volume2 DOI: https://doi.org/10.1038/nrdp.2016.49

Cox R, Plemper RK, The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics, Front Microbiol. 2015; 6():459. DOI: https://doi.org/10.3389/fmicb.2015.00459

Gutsche I, Desfosses A, Effantin G, et al. Near-Atomic Cryo-EM Structure of the Helical Measles Virus Nucleocapsid. Science. 2015; 348(6235):704-707. DOI: https://doi.org/10.1126/science.aaa5137

Brunel J, Chopy D, Dosnon M, Bloyet LM, Devaux P, Urzua E, Cattaneo R, Longhi S, Gerlier D Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions , J Virol. 2014 Sep; 88(18):10851-63. DOI: https://doi.org/10.1128/JVI.00664-14

El Najjar F, Schmitt AP, Dutch RE, Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production, Viruses. 2014 Aug 7; 6(8):3019-54. DOI: https://doi.org/10.3390/v6083019

Harrison MS, Sakaguchi T, Schmitt AP, Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol. 2010 Sep; 42(9):1416-29. DOI: https://doi.org/10.1016/j.biocel.2010.04.005

Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus.Nature (2000).406, 893–897 DOI: https://doi.org/10.1038/35022579

Cannons, J. L., Tangye, S. G. & Schwartzberg, P. L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. (2011), 29, 665–705. DOI: https://doi.org/10.1146/annurev-immunol-030409-101302

Yanagi, Y., Takeda, M., Ohno, S. & Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol.Immunol. (2009) 329, 13–30 DOI: https://doi.org/10.1007/978-3-540-70523-9_2

Melissa M. Coughlin, Andrew S. Beck, Bettina Bankamp and et.al Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies. Viruses. 2017 Jan; 9(1): 11 DOI: https://doi.org/10.3390/v9010011

Sato H, Yoneda M, Honda T, Kai C. Morbillivirus Receptors and Tropism: Multiple Pathways for Infection. Frontiers In Microbiology. 2012; 3(75):1-9. DOI: https://doi.org/10.3389/fmicb.2012.00075

William J. Moss and Diane E. Griffin. Global measles elimination. Nature Reviews Microbiology, 2006, volume 4, pages 900–908 DOI: https://doi.org/10.1038/nrmicro1550

World Health Organization (WHO). Measles. WHO Factsheet. 2017;N°286. http://www.who.int/mediacentre/factsheets/fs286/en/. Accessed 04/05/2017.

https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/meas.pdf

De Vries, R.D.; McQuaid, S.; van Amerongen, G.; Yuksel, S.; Verburgh, R.J.; Osterhaus, A.D.; Duprex,W.P.; de Swart, R.L. Measles immune suppression: Lessons from the macaque model. PLoS Pathog. 2012 DOI: https://doi.org/10.1371/journal.ppat.1002885

William J Moss, Measles, Lancet 2017; 390: 2490–502 DOI: https://doi.org/10.1016/S0140-6736(17)31463-0

Moss WJ, Cutts F, Griffi n DE. Implications of the human immunodefi ciency virus epidemic for control and eradication of measles. Clin Infect Dis 1999; 29: 106–12. DOI: https://doi.org/10.1086/520136

Lin WW, Nelson AN, Ryon JJ, Moss WJ, Griffin DE: Plasma cytokines and chemokines in Zambian children with measles: innate responses and association with HIV-1 coinfection and in-hospital mortality. J Infect Dis 2017, 215:830-839. DOI: https://doi.org/10.1093/infdis/jix012

Lin WH, Kouyos RD, Adams RJ, Grenfell BT, Griffin DE: Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A 2012, 109:14989- 14994 DOI: https://doi.org/10.1073/pnas.1211138109

Okamura A, Itakura O, Yoshioka M, Kubota M, Kikuta H, Kobayashi K: Unusual presentation of measles giant cell pneumonia in a patient with acquired immunodeficiency syndrome. Clin Infect Dis 2001, 32:E57-58. DOI: https://doi.org/10.1086/318499

AlbertynC,vanderPlasH, Hardie D,Candy S,TomokaT,LeepanEB, Heckmann JM: Silent casualties from the measles outbreak in South Africa. S Afr Med J 2011, 101:313-314 316-317. DOI: https://doi.org/10.7196/SAMJ.4616

Nelson AN, Putnam N, Hauer D, Baxter VK, Adams RJ, Griffin DE: Evolution of T cell responses during measles virus infection and RNA clearance. Sci Rep 2017, 7:11474. DOI: https://doi.org/10.1038/s41598-017-10965-z

Permar SR, Klumpp SA, Mansfield KG, Kim WK, Gorgone DA, Lifton MA, Williams KC, Schmitz JE, Reimann KA, Axthelm MK et al.: Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol 2003, 77:4396-4400 DOI: https://doi.org/10.1128/JVI.77.7.4396-4400.2003

Moss WJ, Ryon JJ, Monze M, Griffin DE. Differential regulation of interleukin (IL)-4, IL-5, and IL- 10 during measles in Zambian children. J Infect Dis 2002; 186: 879–87. DOI: https://doi.org/10.1086/344230

Behrens L, Cherry JD, Heininger U, the Swiss Measles Immune Amnesia Study G: The susceptibility to other infectious diseases following measles during a three year observation period in Switzerland. Pediatr Infect Dis J 2020, 39:478-482. DOI: https://doi.org/10.1097/INF.0000000000002599

William J Moss, Diane E GriffiN, Measles, Lancet 2012; 379: 153–64 DOI: https://doi.org/10.1016/S0140-6736(10)62352-5

Featherstone, D., Brown, D. & Sanders, R. Development of the Global Measles Laboratory Network. J. Infect. Dis. (2003), 187, S264–S269 DOI: https://doi.org/10.1086/368054

Ivanova St., Mihneva Z, Toshev A, Kovaleva V, Andonova L, Muller C, Hubschen J. Insights into epidemiology of human parvovirus B19 and detection of an unusual genotype 2 variant, Bulgaria, 2004 to 2013. Euro Surveill. 2016, 21(4) pii=30116. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2016.21.4.30116 DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.4.30116

Bellini WJ, Helfand RF. The challenges and strategies for laboratory diagnosis of measles in an international setting. J Infect Dis 2003;187 (suppl 1): S283–90. DOI: https://doi.org/10.1086/368040

Ivona Andonova, Radostina Stefanova, Stefka Krumova: Laboratory comparative analysis of serological and molecular biological methods for detection of measles virus in Bulgaria. Problems of Infectious and Parasitic Disease, (2020), vol.48, number2, p 5-11

Stevens GA, Bennett JE, Hennocq Q, et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health 2015; 3: e528–36. DOI: https://doi.org/10.1016/S2214-109X(15)00039-X

Semba RD, Bloem MW. Measles blindness. Surv Ophthalmol 2004; 49: 243–55. DOI: https://doi.org/10.1016/j.survophthal.2003.12.005

Ogbuanu IU, Zeko S, Chu SY, et al. Maternal, fetal, and neonatal outcomes associated with measles during pregnancy: Namibia, 2009–2010. Clin Infect Dis 2014; 58: 1086–92 DOI: https://doi.org/10.1093/cid/ciu037

Fisher DL, Defres S, Solomon T. Measles-induced encephalitis.QJM(2015), 108: 177–182. DOI: https://doi.org/10.1093/qjmed/hcu113

Komur M, Arslankoylu AE, Okuyaz C, Kuyucu N. Atypical clinical course subacute sclerosing panencephalitis presenting as acute encephalitis. J Pediatr Neurosci(2012), 7: 120 DOI: https://doi.org/10.4103/1817-1745.102574

Goodson, J. L. & Seward, J. F. Measles 50 years after use of measles vaccine. Infect. Dis. Clin. North Am. (2015),29, 725–743 DOI: https://doi.org/10.1016/j.idc.2015.08.001

Elena Conis, Measles and the Modern History of Vaccination, Public Health Rep Mar/Apr 2019;134(2):118-125 DOI: https://doi.org/10.1177/0033354919826558

https://www.ecdc.europa.eu/sites/default/files/documents/Communicable-disease-threats-report-13-mar-2021.pdf

Marinova L., Muscat M., Mihneva Z., Kojouharova M. An update on an ongoing measles outbreak in Bulgaria, April-November 2009. Euro Surveill., (2009): 14(50):19442.PMID: 20070938 DOI: https://doi.org/10.2807/ese.14.50.19442-en

Muscat Mark, Marinova Lili, Mankertz Annette, Gatcheva Nina, Mihneva Zafira, Santibanez Sabine, Kunchev Angel, Filipova Radosveta, Kojouharova Mira. The measles outbreak in Bulgaria, 2009–2011: An epidemiological assessment and lessons learnt. Euro Surveill. 2016;21(9): pii=30152. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30152). DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.9.30152

Ivanova St., Mihneva Z., Marinova L. Molecular biological studies of patients positive for measles virus during the period of measles elimination process in Bulgaria. Comp. Ren.de l’Acad. Bulg. Des. Sci., (2014): 67, 1, 131-138

Kurchatova A, Krumova S, Vladimirova N, Nikolaeva-Glomb L, Stoyanova A, Kantardjiev T, Gatcheva N. Preliminary findings indicate nosocomial transmission and Roma population as most affected group in ongoing measles B3 genotype outbreak in Bulgaria, March to August 2017. Euro Surveill. 2017;22(36):pii=30611. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.36.30611 DOI: https://doi.org/10.2807/1560-7917.ES.2017.22.36.30611

Komitova R, Kevorkyan A, Boykinova O, Krumova S, Atanasova M, Raycheva R, Stoilova Y, Kunchev A. Difficulties in achieving and maintaining the goal of measles elimination in Bulgaria. Rev Epidemiol Sante Publique. (2019), May;67(3):155-162. doi: 10.1016/j.respe.2019.01.120. Epub 2019 Feb 23. PMID DOI: https://doi.org/10.1016/j.respe.2019.01.120

https://mmr.gateway.bg/disease/mor.php?c=13).

http://mmr.gateway.bg/en

Downloads

Published

2021-08-27

Issue

Section

Articles

How to Cite

(1)
Danova, I. A REVIEW OF MEASLES VIRUS. Probl Infect Parasit Dis 2021, 49 (2), 5-13. https://doi.org/10.58395/pipd.v49i2.69.