EVALUATION OF INTERACTIONS OF SARS-COV-2 STRUCTURAL PROTEINS WITH SPECIFIC ANTIBODIES BY SPR ASSAY

Authors

  • Petia Genova-Kalou National Centre of Infectious and Parasitic Diseases Author
  • G. Dyankov Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia 1113, 109 Acad. G. Bonchev Str., Bulgaria Author
  • H. Kisov Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia 1113, 109 Acad. G. Bonchev Str., Bulgaria Author
  • V. Mankov Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia 1113, 109 Acad. G. Bonchev Str., Bulgaria Author
  • Evdokiya Hikova Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia 1113, 109 Acad. G. Bonchev Str., Bulgaria Author
  • Stefka Krumova National Center of Infectious and Parasitic Diseases, Department of Virology, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria Author
  • N. Malinowski Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Sofia 1113, 109 Acad. G. Bonchev Str., Bulgaria Author

DOI:

https://doi.org/10.58395/peg69k16

Keywords:

SARS-CoV-2, spike (S-) protein, nucleocapsid (N-) protein, anti-SARS-CoV-1/2 antibodies, Surface Plasmon Resonance (SPR) assay

Abstract

Background: The World Health Organization admitted that the vaccination against Covid 19 limited the deaths, but not the spread of the disease. This requires a method allowing a specific, rapid and accurate diagnosis of the disease. We report a SPR assay that meets the requirements and can be applied no only for SARS Cov-2 diagnosis but as a tool for early diagnosis of otherinfections.

Methods: Surface plasmon resonance (SPR) method was used to identify the binding of S/N protein to monoclonal antibodies. N-protein monoclonal antibody (NP mAb), S-protein monoclonal antibody (SP mAb), and receptor bind domain (RBD) antibody were used as recognition molecules. Ligands were deposited by the matrix-assisted laser evaporation (MAPLE) method, which guarantees maximum interaction specificity.

Results: We registered S/N protein binding to the corresponding mAbs and S protein to RBD antibody with high sensitivity: the interactions were observed at protein concentration about 130 femtomoles (fM). A very good specificity was observed: the measured S protein binding activity to NP mAb was below the limit of detection (LOD). The same was noticed for N protein binding to SP mAb.

Conclusions: The presented SPR assay possesses high sensitivity and selectivity and provides quantitative analysis. This makes it applicable for following the evolution of acute SARS-CoV-2 infection, especially at the early stages of viral replication which can be clinically useful.

Downloads

Download data is not yet available.

References

Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, O.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; Jervey, S.R.; Liu, C. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020, 6, 591-605. https://doi.org/10.1021/acscentsci.0c00501

Liu, G.; Rusling, J.F. COVID-19 antibody tests and their limitations. ACS Sens. 2021, 6, 593-612. https://doi.org/10.1021/acssensors.0c02621

Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020, 25, 1-8. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 2020, 323, 2249-2251. https://doi.org/10.1001/jama.2020.8259

Wang, Y.; Kang, H.; Liu, X.; Tong, Z. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J Med Virol. 2020, 92(6), 538-539. https://doi.org/10.1002/jmv.25721

Goudouris, E.S. Laboratory diagnosis of COVID-19. J Pediatr (Rio J) 2021, 97(1), 7-12. https://doi.org/10.1016/j.jped.2020.08.001

Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody tests in detecting SARS-CoV-2 infection: a meta-analysis. Diagn Basel Switz. 2020, 10(5). https://doi.org/10.3390/diagnostics10050319

Dinnes, J.; Deeks, J.J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; Dretzke, J.; Ferrante di Ruffano, L.; Harris, I.M.; Price, M.J.; Taylor-Phillips, S.; Hooft, L.; Leeflang, M.M.; Spijker, R.; Van den Bruel, A.; Cochrane COVID-19 Diagnostic Test Accuracy Group. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2021, 1, 409. https://doi.org/10.1002/14651858.CD013705.pub2

Lee, J.H.; Choi, M.; Jung, Y.; Lee, S.K.; Lee, C.; Kim, J.; Kim, J.; Kim, N.H.; Kim, B.; Kim, H.G. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens. Bioelectron. 2021, 171, 112715. https://doi.org/10.1016/j.bios.2020.112715

B D Grant, Anderson, C.E.; Williford, J.R.; Alonzo, L.F.; Glukhova, V.A.; Boyle, D.S.; Bernhard H. Weigl, B.H.; Nichols, K.P. SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip lateral flow assay toward the development of point of care tests using commercially available reagents. Anal. Chem. 2020, 92, 11305-11309. https://doi.org/10.1021/acs.analchem.0c01975

Park, J.H.; Cho, Y.W.; Kim, T.H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. https://doi.org/10.3390/bios12030180

Basso, C.R.; Malossi, C.D.; Haisi, A.; Pedrosa, V.; Barbosa, A.N.; Grotto, R.T.; Junior, J.P.A. Fast and reliable detection of SARS-CoV-2 antibodies based on surface plasmon resonance. Anal. Methods 2021, 13,3297-3306. https://doi.org/10.1039/D1AY00737H

Szunerits, S.; Spadavecchia, J.; Boukherroub. R. Surface plasmon resonance: Signal amplification using colloidal gold nanoparticles for enhanced sensitivity. Rev. Anal. Chem. 2014, 33, 153-164. https://doi.org/10.1515/revac-2014-0011

Yano, T.; Kajisa, T.; Ono, M.; Miyasaka, Y.; Hasegawa, M.; Saito, A.; Otsuka, K.; Sakane, A.; Sasaki, T.; Yasutomo, K.; Hamajima, R.; Kanai, Y.; Kobayashi, T.; Matsuura, Y.; Itonaga, M.; Yasui, T. Scientific Reports 2022 12:1060. https://doi.org/10.1038/s41598-022-05036-x

Park, T.J.; Hyun, M.S.; Lee, H.J.; Lee, S.Y.; Ko, S.A. Self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta 2009, 79 (2), 295- 301. https://doi.org/10.1016/j.talanta.2009.03.051

Lim, W.Y.; Lan, B.L.; Ramakrishnan, N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors 2021, 11, 434. https://doi.org/10.3390/bios11110434

Mauriz, E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors 2020, 20, 47452. https://doi.org/10.3390/s20174745

Kisov, H.; Dyankov, G.; Belina, E.; Petrov, M.; Naradikian, H.; Dimitrova, T.; Malinowski, N. Surface plasmon excitation on a grating assisted by a cholesteric liquid crystal layer. Applied Optics 2022, 61, 8, 2019-2024. https://doi.org/10.1364/AO.451178

Dyankov, G.; Borisova, E.; Belina, E.; Kisov, H.; Angelov, I.; Gisbrecht, A.; Strijkova, V.; Malinowski, N. A Surface Plasmon Resonance Biosensor Based on Directly Immobilized Hemoglobin and Myoglobin. Sensors MDPI 2020, 20, 19. https://doi.org/10.3390/s20195572

Dyankov, G.; Eftimov, T.; Malinovski, N.; Belina, E.; Kisov, H.; Mikulic, P.; Bock, W. Highly Efficient Biosensor based on MAPLE Deposited Hemoglobin on LPGs Around Phase Matching Turning Point. Optics And Laser Technology 2020, 123, 105907. https://doi.org/10.1016/j.optlastec.2019.105907

Pereira J.: de Nooy S.; Sleutels T.; ter Heijne A., Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms, Biotechnology Advances, 60, 2022, 108011, https://doi.org/10.1016/j.biotechadv.2022.108011

Shicao Wei A.; Li Y.: Li K.; Zhong C., Biofilm-inspired Amyloid-Polysaccharide Composite Materials, Materials Today 27, 2022, 101497, https://doi.org/10.1016/j.apmt.2022.101497

Akib, T.B.A.; Mou, S.F.; Rahman, M.; Rana, M.; Islam, M.; Mehedi, I.M.; Mahmud, M.; Kouzani, A.Z. Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus. Sensors 2021, 21, 3491 https://doi.org/10.3390/s21103491

Bong, J.H.; Kim, T.H.; Jung, J.; Lee, S.J.; Sung, J.S.; Lee, C.K.; Kang, M.-J.; Kim, H.O.; Pyun, J.C. Pig Sera-derived Anti-SARS-CoV-2 Antibodies in Surface Plasmon Resonance Biosensors. Biochip J. 2020, 14, 358-368. https://doi.org/10.1007/s13206-020-4404-z

Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection, ACS Nano 2020 14, 5268-5277 https://doi.org/10.1021/acsnano.0c02439

Wu, Q.; Wu, W.; Chen, F.; Ren, P. Highly Sensitive and Selective Surface Plasmon Resonance Biosensor for the Detection of SARS-CoV-2 Spike S1 Protein. Analyst 2022, 147, 2809-2818. https://doi.org/10.1039/D2AN00426G

Eftimov, T.; Genova-Kalou, P.; Dyankov, G.; Bock, W.; Mankov, V.; Ghaffari, S.; Veselinov, P.; Arapova, A.; Makouei, S. Capabilities of Double Resonance LPG and SPR Methods for Hypersensitive Detection of SARS Cov-2 Structural proteins: A Comparative Study, Biosensors MDPI, 2023, 13, 318. https://doi.org/10.3390/bios13030318

Downloads

Published

2023-08-14

Issue

Section

Articles

How to Cite

(1)
Genova-Kalou, P.; Dyankov, G.; Kisov, H.; Mankov, V.; Hikova, E.; Krumova, S.; Malinowski, N. EVALUATION OF INTERACTIONS OF SARS-COV-2 STRUCTURAL PROTEINS WITH SPECIFIC ANTIBODIES BY SPR ASSAY. Probl Infect Parasit Dis 2023, 50 (3), 29-35. https://doi.org/10.58395/peg69k16.

Most read articles by the same author(s)