A REVIEW OF GENOME ORGANIZATION, EVOLUTION, TRANSMISSION, CIRCULATION, AND CLINICAL MANIFESTATION OF MONKEYPOX VIRUS
DOI:
https://doi.org/10.58395/keg0y660Keywords:
mpox, clade 1, clade 2Abstract
Mpox is an illness caused by the monkeypox virus (MPXV, genus Orthopoxvirus), which infects animals and humans. Genetically, there are two MPXV clades: The Central (1) and West (2), with two reported subclades for each. MPXV can be transmitted between animals, from animals to humans, and humans to humans. Since May 2022, a multi-country outbreak of mpox has been registered in non-endemic regions. After a decrease in the number of confirmed cases in 2023, a re-emerging spread of mpox clade I in Africa and various EU/EEA countries has been registered since mid-2024, and into 2025. According to available genomic data, nonsense or frameshift mutations of MPXV resulting in loss of protein-coding genes and noncoding genes or regulatory regions observed in endemic regions of Central Africa have been associated with human-to-human transmission of the virus. Urbanization caused by population growth in West Africa may increase the risk of human MPXV infection. The infection spread, especially among the countries of the European continent, has led to increased research on mpox prevention and therapy, with data being continuously updated. Monitoring of potential animal reservoirs and exploring new transmission routes are important. Over time, the MPXV has evolved by accumulating genome mutations, contributing to its adaptability and easier human-to-human transmission.
Downloads
References
1. Simoes P, Bhagani S. A viewpoint: The 2022 monkeypox outbreak. Journal of Virus Eradication, 2022, 8 (2), ISSN 2055-6640, https://doi.org/10.1016/j.jve.2022.100078.
2. Von Magnus P, Andersen EK, Birkum Petersen K, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand, 1959; 46: 156-76. https://doi.org/10.1111/j.1699-0463.1959.tb00328.x
3. Marennikova SS, Seluhina EM, Mal'ceva NN, Cimiskjan KL, Macevic GR. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ, 1972, 46(5):599-611. PMID: 4340219; PMCID:PMC2480798.
4. Chen N, Li G, Liszewski MK, et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology, 2005, 340(1):46-63. https://doi.org/10.1016/j.virol.2005.05.030. PMID: 16023693.
5. Doty JB, Malekani JM, Kalemba LN, et al. Assessing Monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo. Viruses, 2017, 9:283. https://doi.org/10.3390/v9100283
6. Nolen LD, Osadebe L, Katomba J, et al. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg Infect Dis; 2016, 22:1014-21. https://doi.org/10.3201/eid2206.150579
7. Likos AM, Sammons SA, Olson VA, et al. A tale of two clades: monkeypox viruses. J Gen Virol, 2005, 86:2661-72. https://doi.org/10.1099/vir.0.81215-0
8. International Committee on Taxonomy of Viruses, https://ictv.global/taxonomy; 2022 [accessed 8 August 2022].
9. Saijo M, Ami Y, Suzaki Y, Nagata N, Iwata N, Hasegawa H, et al. Virulence and pathophysiology of the Congo Basin and West African strains of monkeypox virus in nonhuman primates. J. Gen. Virol., 2009, 90, pp. 2266-2271. https://doi.org/10.1099/vir.0.010207-0
10. Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo Basin. Virology. 2005, 340:46-63. https://doi.org/10.1016/j.virol.2005.05.030
11. Hutson CL, Abel JA, Carroll DS, Olson VA, Braden ZH, et al. Comparison of West African and Congo Basin Monkeypox Viruses in BALB/c and C57BL/6 Mice. PLOS ONE, 2010, 5(1) https://doi.org/10.1371/journal.pone.0008912.
12. The World Health Organization (WHO). 2022 Mpox Outbreak: Global Trends. 2023. https://worldhealthorg.shinyapps.io/mpx_global/ [accessed 19 January 2023].
13. Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H, et al. Monkeypox and its possible sexual transmission: where are we now with its evidence? Pathogens, 2022, 11(8):924. https://doi.org/10.3390/pathogens11080924
14. Kaler J, Hussain A, Flores G, Kheiri S, Desrosiers D. Monkeypox: a comprehensive review of transmission, pathogenesis, and manifestation. Cureus, 2022, 14(7). https://doi.org/10.7759/cureus.26531
15. Sklenovská N, Van Ranst M. Emergence of Monkeypox as the Most Important Orthopoxvirus Infection in Humans. Front. Public Health, 2018, 6, 241. https://doi.org/10.3389/fpubh.2018.00241
16. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, Steffen R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis., 2022, 16, e0010141. https://doi.org/10.1371/journal.pntd.0010141
17. Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses, 2020, 12, 1257. https://doi.org/10.3390/v12111257
18. Happi C, Adetifa I, Mbala P, Njouom R, Nakoune E, Happi A, Ndodo N, Ayansola O, Mboowa G, Bedford T et al. Urgent Need for a Non-Discriminatory and Non-Stigmatizing Nomenclature for Monkeypox Virus. PLoS Biol., 2022, 20(8):e3001769. https://doi.org/10.1371/journal.pbio.3001769
19. Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, Kazmierczak JJ, Stratman EJ, Li Y, Fairley JA et al. The Detection of Monkeypox in Humans in the Western Hemisphere. N. Engl. J. Med. 2004, 350, 342-350. https://doi.org/10.1056/NEJMoa032299
20. Knight JC, Goldsmith CS, Tamin A, Regnery RL, Regnery DC, Esposito JJ. Further analyses of the orthopoxviruses volepox virus and raccoon poxvirus. Virology, 1992, 190, 423-433. https://doi.org/10.1016/0042-6822(92)91228-M
21. Zhao K, Wohlhueter RM & Li Y. Finishing monkeypox genomes from short reads: assembly analysis and a neural network method. BMC Genomics 17 (Suppl 5), 2016, p. 497. https://doi.org/10.1186/s12864-016-2826-8.
22. Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health. 2023, 16(4):531-541. https://doi.org/10.1016/j.jiph.2023.02.003
23. Gigante CM, Korber B, Seabolt MH, Wilkins K., Davidson W, Rao AK, et al. Multiple lineages of Monkeypox virus detected in the United States, 2021-2022. Science. 2022, 378(6619):560-565. https://doi.org/10.1126/science.add4153
24. Liddament MT, Brown WL, Schumacher AJ, Harris RS. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 2004, 14:1385-1391. https://doi.org/10.1016/j.cub.2004.06.050
25. Vartanian JP, Guetard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science. 2008, 320(5873):230-233. https://doi.org/10.1126/science.1153201
26. Vartanian JP, Henry M, Marchio A, Suspène R, Aynaud MM, Guétard D, et al. Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis. PLoS Pathog. 2010, 6. https://doi.org/10.1371/journal.ppat.1000928
27. Harris RS, Dudley JP. APOBECs and virus restriction. Virology. 2015, 479:131-145. https://doi.org/10.1016/j.virol.2015.03.012
28. Salter JD, Bennett RP, Smith HC. The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci. 2016, 41:578-594. https://doi.org/10.1016/j.tibs.2016.05.001
29. Jones TC, Schneider J, Muehlemann B, Veith T, Beheim-Schwarzbach J, Tesch J, et al. Genetic variability, including gene duplication and deletion, in early sequences from the 2022 European monkeypox outbreak. bioRxiv. 2022 https://doi.org/10.1101/2022.07.23.501239
30. Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses. 2010, 2:1933-1967. https://doi.org/10.3390/v2091933
31. Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. Infect Genet Evol. 2014, 21:15-40. https://doi.org/10.1016/j.meegid.2013.10.014
32. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J, et al. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell. 2012, 150:831-841. https://doi.org/10.1016/j.cell.2012.05.049
33. Brennan G, Kitzman JO, Rothenburg S, Shendure J, Geballe AP. Adaptive gene amplification as an intermediate step in the expansion of virus host range. PLoS Pathog. 2014, 10. https://doi.org/10.1371/journal.ppat.1004002
34. Mitjà, Oriol et al. Monkeypox.The Lancet, 2022, 401, 10370, 60 – 74 https://doi.org/10.1016/S0140-6736(22)02075-X
35. Hutson CL, Carroll DS, Gallardo-Romero N, Drew C, Zaki SR, Nagy T, Hughes C, Olson et al. Comparison of Monkeypox Virus Clade Kinetics and Pathology within the Prairie Dog Animal Model Using a Serial Sacrifice Study Design. Biomed. Res Int. 2015, 965710. https://doi.org/10.1155/2015/965710
36. McCollum AM, Damon IK. Human monkeypox. Clin. Infect. Dis. 2014, 58, 260-267. https://doi.org/10.1093/cid/cit703
37. Ogoina D, Izibewule JH, Ogunleye A, Ederiane E, Anebonam U, Neni A, Oyeyemi A, Etebu EN, Ihekweazu C. The 2017 human monkeypox outbreak in Nigeria-Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS ONE, 2019, 14, e0214229. https://doi.org/10.1371/journal.pone.0214229
38. Paharia T, Paharia PT. Insights into the biology of the monkeypox virus. News-Medical. 2022. https://www.news-medical.net/news/20220823/Insights-into-the-biology-of-the-monkeypox-virus.aspx
39. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol. 2018 Oct 16;9:2379. https://doi.org/10.3389/fimmu.2018.02379
40. Shchelkunov SN. Orthopoxvirus genes that mediate disease virulence and host tropism. Adv. Virol. 2012, 524743. https://doi.org/10.1155/2012/524743
41. O'Neill LAJ; Bowie AG. The family of five: TIR-domain-containing adaptors in Toll like receptor signalling. Nat. Rev. Immunol. 2007, 7, 353-364. https://doi.org/10.1038/nri2079
42. Shi Y. Caspase activation, inhibition, and reactivation: A mechanistic view. Protein. Protein Sci. 2004, 13, 1979-1987. https://doi.org/10.1110/ps.04789804
43. Youle RJ, Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell. Biol. 2008, 9, 47-59. https://doi.org/10.1038/nrm2308
44. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 1999, 189, 1839-1845. https://doi.org/10.1084/jem.189.11.1839
45. Li X, Massa PE, Hanidu A, Peet GW, Aro P, Savitt A, Mische S, Li J, Marcu KB. IKK_, IKK_, and NEMO/IKK Are Each Required for the NF-_B-mediated Inflammatory Response Program. J. Biol. Chem. 2002, 277, 45129-45140. https://doi.org/10.1074/jbc.M205165200
46. Goetzke CC, Ebstein F, Kallinich T. Role of Proteasomes in Inflammation. J. Clin. Med. 2021, 10, 1783. https://doi.org/10.3390/jcm10081783
47. Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures. Clin. Infect. Dis. 2005, 41, 1765-1771. https://doi.org/10.1086/498155
48. Howard J, Justus DE, Totmenin AV, Shchelkunov S, Kotwal GJ. Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: Evasion of the inflammatory response to preserve viral habitat. J. Leukoc. Biol. 1998, 64, 68-71. https://doi.org/10.1002/jlb.64.1.68
49. Miller CG, Shchelkunov SN, Kotwal GJ. The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. Virology, 1997, 229, 126-133. https://doi.org/10.1006/viro.1996.8396
50. Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health. 2023, 16(4):531-541. https://doi.org/10.1016/j.jiph.2023.02.003
51. Kaler J, Hussain A, Flores G, Kheiri S, Desrosiers D. Monkeypox: a comprehensive review of transmission, pathogenesis, and manifestation. Cureus. 2022, 14(7). https://doi.org/10.7759/cureus.26531
52. McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014, 58(2):260-267. https://doi.org/10.1093/cid/cit703
53. Sklenovská N, Van Ranst M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front Public Health. 2018, 6:241. https://doi.org/10.3389/fpubh.2018.00241
54. Fleischauer AT, Kile JC, Davidson M, Fischer M, Karem KL, Teclaw R, et al. Evaluation of human-to-human transmission of monkeypox from infected patients to health care workers. Clin Infect Dis. 2005, 40(5):689-694. https://doi.org/10.1086/427805
55. Vaughan A, Aarons E, Astbury J, et al. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018. Emerg Infect Dis. 2020, 26:782-785. https://doi.org/10.3201/eid2604.191164
56. Vivancos R, Anderson C, Blomquist P, Balasegaram S, Bell A, Bishop L, et al. Monkeypox incident management team. community transmission of monkeypox in the United Kingdom. April May 2022 Eur Surveill. 2022, 27:2200422. https://doi.org/10.2807/1560-7917.ES.2022.27.22.2200422
57. Erez N, Achdout H, Milrot E, Schwartz Y, Wiener-Well Y, Paran N, et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg Infect Dis. 2019, 25:980-983. https://doi.org/10.3201/eid2505.190076
58. The World Health Organization (WHO). 2022 Mpox Outbreak: Global Trends. 2023. https://worldhealthorg.shinyapps.io/mpx_global/ [accessed 19 January 2023].
59. Lai CC, Hsu CK, Yen MY, Lee PI, Ko WC, Hsueh PR. Monkeypox: An emerging global threat during the COVID-19 pandemic. J Microbiol Immunol Infect. 2022, 55(5):787-794. https://doi.org/10.1016/j.jmii.2022.07.004
60. https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html
63. Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H, et al. Monkeypox and its possible sexual transmission: where are we now with its evidence? Pathogens. 2022, 11(8):924. https://doi.org/10.3390/pathogens11080924
64. Alakunle EF, Okeke MI. Monkeypox virus: a neglected zoonotic pathogen spreads globally. Nat Rev Microbiol. 2022, 20(9):507-508. https://doi.org/10.1038/s41579-022-00776-z
65. Dye C, Kraemer MUG. Investigating the monkeypox outbreak. BMJ. 2022, 377:o1314. https://doi.org/10.1136/bmj.o1314
66. Estep RD, Messaoudi I, O'Connor MA, Li H, Sprague J, Barron A, Engelmann F, Yen B, Powers MF, Jones JM, et al. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection. J. Virol. 2011, 85, 9527-9542. https://doi.org/10.1128/JVI.00199-11
67. Centers for Disease Control and Prevention (CDC). 2022 Monkeypox Outbreak Global Map. Available online: https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html (accessed on 10 September 2022).
68. Di Giulio DB, Eckburg PB. Human monkeypox: An emerging zoonosis. Lancet. Infect. Dis. 2004, 4, 15-25. https://doi.org/10.1016/S1473-3099(03)00856-9
69. Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA. Reemergence of monkeypox: Prevalence, diagnostics,and countermeasures. Clin. Infect. Dis. 2005, 41, 1765-1771. https://doi.org/10.1086/498155
70. Laboratory testing for the monkeypox virus. Interim guidance. WHO. 23 May 2022. https://apps.who.int/iris/bitstream/handle/10665/354488/WHO-MPX-Laboratory-2022.1-eng.pdf
71. Carannante N, Tiberio C, Bellopede R, Liguori M, Di Martino; et al. (2022): Monkeypox Clinical Features and Differential Diagnosis: First Case in Campania Region. Pathogens, 11, 869. https://doi.org/10.3390/pathogens11080869
72. Ahmed M, Naseer H, Arshad M, Ahmad A. Monkeypox in 2022: A new threat in developing. Ann Med Surg (Lond). 2022, 78:103975. https://doi.org/10.1016/j.amsu.2022.103975
73. Douglass N, Dumbell K. Independent evolution of monkeypox and variola viruses. J Virol. 1992, 66(12):7565-7. https://doi.org/10.1128/jvi.66.12.7565-7567.1992
74. Jezek Z and Fenner F. Human monkeypox. Monographs in virology. 1988, (Switzerland): Karger, p. 81-102.
75. Marennikova SS, and EM Shelukhina. Whitepox virus isolated from hamsters inoculated with monkeypox virus. Nature (London), 1976, 276:291-292. https://doi.org/10.1038/276291a0
76. Dumbell KR, and LC Archard. Comparison of white pock (h) mutants of monkeypox virus with parental monkeypox and with variola-like viruses isolated from animals. Nature (London), 1980, 286:29-32. https://doi.org/10.1038/286029a0
77. Esposito JJ, Nakano JH, and Oboeski JF. Can variolalike viruses be derived from monkeypox virus? An investigation based on DNA mapping. Bull. W.H.O., 1985, 63:695- 703.
78. Velavan TP, Meyer CG. Monkeypox 2022 outbreak: An update. Trop Med Int Health., 2022, 27(7):604-5. https://doi.org/10.1111/tmi.13785
79. Yinka-Ogunleye A, Aruna O, Dalhat M, et al. Outbreak of human monkeypox in Nigeria in 2017-18: a clinical and epidemiological report. Lancet Infect Dis, 2019, 19:872-9. https://doi.org/10.1016/S1473-3099(19)30294-4
80. Erez N, Achdout H, Milrot E, et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg Infect Dis, 2019, 25:980. https://doi.org/10.3201/eid2505.190076
81. Ng OT, Lee V, Marimuthu K, et al. A case of imported monkeypox in Singapore. Lancet Infect Dis; 2019, 19:1166. https://doi.org/10.1016/S1473-3099(19)30537-7
82. Mauldin MR, McCollum AM, Nakazawa YJ, Mandra A, Whitehouse et. al. Exportation of Monkeypox Virus from the African Continent. The Journal of infectious diseases, 2022, 225(8), 1367-1376. https://doi.org/10.1093/infdis/jiaa559
83. Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med; 2004, 350:342-50. https://doi.org/10.1056/NEJMoa032299
84. Isidro J BV, Pinto M, Ferreira R, Sobral D, Nunes A, Santos JD, et al. First draft genome sequence of Monkeypox virus associated with the suspected multi-country outbreak, May 2022 (confirmed case in Portugal). 2022, https://virological.org/t/first-draft-genome-sequence-of-monkeypox-virus-associated-with-the-suspected-multi-country-outbreak-may-2022-confirmed-case-in-portugal/799
85. Selhorst P RA, de Block T, Coppens S, Smet H, Mariën J, Hauner A, et al. Belgian case of Monkeypox virus linked to outbreak in Portugal. 2022.
86. ECDC. Epidemiological update: Monkeypox multi-country outbreak. Summary of epidemiological update as of 15 June. Available at: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-monkeypox-multi-country-outbreak-15-june.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Assoc. Prof. Stefka Krumova, PhD, Dr. Daniel Ivanov, Prof. Iva Christova, MD, PhD (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.