LYMPHOCYTIC CHORIOMENINGITIS VIRUS INFECTION

What is done and prospects for future studies

Authors

  • Teodora Gladnishka National Centre of Infectious and Parasitic Diseases - Sofia, Bulgaria Author
  • Iva Trifonova National Centre of Infectious and Parasitic Diseases - Sofia, Bulgaria Author
  • Vladislava Ivanova National Centre of Infectious and Parasitic Diseases - Sofia, Bulgaria Author
  • Iva Christova National Centre of Infectious and Parasitic Diseases - Sofia, Bulgaria Author

DOI:

https://doi.org/10.58395/c51sc073

Keywords:

Lymphocytic choriomeningitis virus, Diagnosis, serology

Abstract

Background: Lymphocytic choriomeningitis virus (LHMV) infection is a neglected rodent-borne zoonotic infection but it is found all over the world because of the cosmopolitan distribution of its reservoirs. The diagnostic of this disease is not widely applied that is why it has been underreported. The aim of this study is to investigate infection with LCMV in hospitalized patients in 2015-2022 in Bulgaria and to analyse the data compared to the worldwide data available in this field of research.

Materials/methods: A total of 66 serum samples and 25 cerebrospinal fluid (CSF) samples from 73 patients with suspected LCMV infection from different hospitals in Bulgaria were collected. All samples were tested with a commercial enzyme-linked immunosorbent assay (Human LCMV-Ab ELISA, SSBT, China), based on the principle of double-antibody sandwich technique to detect Human LCMV-Antibody.

Results: A total of 11/91 (12.09%) positive samples were found in 5 males and 6 females throughout the study period. The positive samples were from patients from the cities: Sofia, Stara Zagora, Montana. A total of 3/25 (12%) positive samples were from CSF samples and 8/66 positive samples (12.12%) were from serum samples.

Conclusions: It’s found that this infection occurs in our country and should not be underestimated, due to the possible severe neurological course and the danger of fetal damage in pregnant women. The diagnosis of LCMV infection is based on previous experience, placed in the light of the continuous introduction of new more sensitive and specific approaches.

Downloads

Download data is not yet available.

References

Centers for Diseases Control and Prevention. Lymphocytic Choriomeningitis Virus (LCM). Available online: https://www.cdc. gov/vhf/lcm/index.html (accessed on 10 April 2021).

Vilibic-Cavlek, T.; Savic, V.; Ferenc, T.; Mrzljak, A.; Barbic, L.; Bogdanic, M.; Stevanovic, V.; Tabain, I.; Ferencak, I.; Zidovec-Lepej, S. Lymphocytic Choriomeningitis-Emerging Trends of a Neglected Virus: A Narrative Review. Trop. Med. Infect. Dis. 2021, 6, 88, 1-19. https://doi.org/10.3390/tropicalmed6020088

Arbovirus infections. Viral hemorrhagic fevers and bioterrorism. Kamarinchev B., Monev V., Voinova V., Serbezov V., Novkirishki V., Katsarov G., Kalvachev Z., Dikov I., Arabadzhiev K., Mekushinov K., Tiholova M., Nenova M., Gacheva N ., Hristova T. Edited by Prof. V. Serbezov and Associate Professor Z. Kalvachev. Chapter: Serbezov V., Nenova M., Voinova V., Katsarov G., Kalvachev Z. Lymphocytic choriomeningitis, HMI, Sofia, 2005, 162-170.

Takagi, T.; Ohsawa, M.; Morita, C.; Sato, H.; Ohsawa, K. Genomic analysis and pathogenic characteristics of lymphocytic choriomeningitis virus strains isolated in Japan. Comp. Med. 2012, 62, 185-192. PMID: 22776051 PMCID:PMC3364700

Takagi, T.; Ohsawa, M.; Yamanaka, H.; Matsuda, N.; Sato, H.; Ohsawa, K. Difference of two new LCMV strains in lethality and viral genome load in tissues. Exp. Anim. 2017, 66, 199-208. https://doi.org/10.1538/expanim.16-0097

Traub, E. A filterable virus recovered from white mice. Science 1935, 81, 298-299. https://doi.org/10.1126/science.81.2099.298

Lapošová, K.; Pastoreková, S.; Tomášková, J. Lymphocytic choriomeningitis virus: Invisible but not innocent. Acta Virol. 2013, 57, 160-170. https://doi.org/10.4149/av_2013_02_160

Hotchin, J.; Sikora, E.; Kinch, W.; Hinman, A.; Woodall, J. Lymphocytic choriomeningitis in a hamster colony causes infection of hospital personnel. Science 1974, 185, 1173- 1174. Trop. Med. Infect. Dis. 2021, 6, 88 16 of 19. https://doi.org/10.1126/SCIENCE.185.4157.1173

Ackermann, R.; Stille, W.; Blumenthal, K. Syrische Goldhamster als unbertrager von lymphozytarer choriomeningitis. Deutsche Medizinische Wochenschrift 1972, 97, 1725-1731. https://doi.org/10.1055/s-0028-1107638

Rollin, P.E.; Nichol, S.T.; Zaki, S.; Ksiazek, T.G. Arenaviruses and Filoviruses. Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Phaller, M.A., Carroll, K.C., Landry, M.L., Funke, G., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 1669-1686.

Centers for Disease Control and Prevention (CDC). Lymphocytic choriomeningitis virus infection in organ transplant recipients in Massachusetts, Rhode Island, 2005. Morb. Mortal. Wkly. Rep. 2005, 54, 537-539.

MacNeil, A.; Ströher, U.; Farnon, E.; Campbell, S.; Cannon, D.; Paddock, C.D.; Drew, C.P.; Kuehnert, M.; Knust, B.; Gruenen-Felder, R.; et al. Solid organ transplant-associated lymphocytic choriomeningitis, United States, 2011. Emerg. Infect. Dis. 2012, 18, 1256-1262. https://doi.org/10.3201/eid1808.120212

Komrower, G.M.; Williams, B.L.; Stones, P.B. Lymphocytic choriomeningitis in the newborn; Probable transplacental infection. Lancet 1955, 268, 697-698. https://doi.org/10.1016/s0140-6736(55)91066-7

Bonthius, D.J. The arenaviruses. Neurotropic Viral Infections; Reiss, C.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 149-174. https://doi.org/10.1007/978-3-319-33133-1_6

Ackermann, R.; Körver, G.; Turss, R.; Wönne, R.; Hochgesand, P. Pränatale infektion mit dem virus der lymphozytären choriomeningitis: Bericht über zwei fälle. Deutsche Medizinische Wochenschrift 1974, 99, 629-632. https://doi.org/10.1055/s-0028-1107814

Sheinbergas, M. Hydrocephalus due to prenatal infection with the lymphocytic choriomeningitis virus. Infection 1976, 4, 185-191. https://doi.org/10.1007/bf01638922

Chastel, C.; Bosshard, S.; Le Goff, F.; Quillien, M.C.; Gilly, R.; Aymard, M. Infection transplacentaire par le virus de la chorioméningite lymphocytaire. Résultats d’une enquête sérologique rétrospective en France. Nouvelle Presse Medicale 1978, 7, 1089-1092. PMID: 662624

Wright, R.; Johnson, D.; Neumann, M.; Ksiazek, T.G.; Rollin, P.; Keech, R.V.; Bonthius, D.J.; Hitchon, P.; Grose, C.F.; Bell, W.E.; et al. Congenital lymphocytic choriomeningitis virus syndrome: A disease that mimics congenital toxoplasmosis or cytomegalovirus infection. Pediatrics 1997, 100, e9. https://doi.org/10.1542/peds.100.1.e9

Alburkat, H.; Jääskeläinen, A.J.; Barakat, A.M.; Hasony, H.J.; Sironen, T.; Al-Hello, H.; Smura, T.; Vapalahti, O. Lymphocytic choriomeningitis virus infections and seroprevalence, Southern Iraq. Emerg. Infect. Dis. 2020, 26, 3002-3006. https://doi.org/10.3201/eid2612.201792

Pekova L, Halacheva K, Dochev I. Comparative analysis of clinical and laboratory parameters between viral and bacterial neuroinfections. Probl. Inf. Parasit. Dis. Vol. 49, 2021,1, 26-31. https://doi.org/10.58395/pipd.v49i1.53

Adair, C.V.; Gauld, R.L.; Smadel, J.E. Aseptic meningitis, a disease of diverse etiology: Clinical and etiologic studies on 854 cases. Ann. Intern. Med. 1953, 39, 675-704. https://doi.org/10.7326/0003-4819-39-4-675

Ambrosio, A., Saavedra M., Gamboa G., Maiza A., Mariani M. Ecological and epidemiological features of lymphocytic choriomeningitis virus activity in Argentina. Book chapter: Curr. Top. Virol. Vol. 12, 2014, 53-63.

Stephensen, C.B.; Blount, S.R.; Lanford, R.E.; Holmes, K.V.; Montali, R.J.; Fleenor, M.E.; Shaw, J.F. Prevalence of serum antibodies against lymphocytic choriomeningitis virus in selected populations from two, U.S. cities. J. Med. Virol. 1992, 38, 27-31. https://doi.org/10.1002/jmv.1890380107

Marrie, T.J.; Saron, M.F. Seroprevalence of lymphocytic choriomeningitis virus in Nova Scotia. Am. J. Trop. Med. Hyg. 1998, 58, 47-49. https://doi.org/10.4269/ajtmh.1998.58.47

Lledó, L.; Gegúndez, M.I.; Saz, J.V.; Bahamontes, N.; Beltrán, M. Lymphocytic choriomeningitis virus infection in a province of Spain: Analysis of sera from the general population and wild rodents. J. Med. Virol. 2003, 70, 273-275. https://doi.org/10.1002/jmv.10389

Riera, L.; Castillo, E.; del Carmen, M.S.; Priotto, J.; Sottosanti, J.; Polop, J.; Ambrosio, A.M. Serological study of the lymphochoriomeningitis virus (LCMV) in an inner city of Argentina. J. Med. Virol. 2005, 76, 285-289. https://doi.org/10.1002/jmv.20357

Fevola, C.; Kuivanen, S.; Smura, T.; Vaheri, A.; Kallio-Kokko, H.; Hauffe, H.C.; Vapalahti, O.; Jääskeläinen, A.J. Seroprevalence of lymphocytic choriomeningitis virus and Ljungan virus in Finnish patients with suspected neurological infections. J. Med. Virol. 2018, 90, 429-435. https://doi.org/10.1002/jmv.24966

Ushijima, Y.; Abe, H.; Ozeki, T.; Ondo, G.N.; Mbadinga, M.J.V.M.; Bikangui, R.; Nze-Nkogue, C.; Akomo-Okoue, E.F.; Ella, G.W.E.; Koumba, L.B.M.; et al. Identification of potential novel hosts and the risk of infection with lymphocytic choriomeningitis virus in humans in Gabon, Central Africa. Int. J. Infect. Dis. 2021, 105, 452-459. https://doi.org/10.1016/j.ijid.2021.02.105

Vilibic-Cavlek, T.; Oreski, T.; Korva, M.; Kolaric, B.; Stevanovic, V.; Zidovec-Lepej, S.; Tabain, I.; Jelicic, P.; Miklausic-Pavic, B.; Savic, V. et al. Prevalence and risk factors for lymphocytic choriomeningitis virus infection in continental Croatian regions. Trop. Med. Infect. Dis. 2021, 6, 67. https://doi.org/10.3390/tropicalmed6020067

Vilibic-Cavlek, T.; Barbic, L.; Mrzljak, A.; Brnic, D.; Klobucar, A.; Ilic, M.; Janev-Holcer, N.; Bogdanic, M.; Jemersic, L.; Stevanovic, V.; et al. Emerging and neglected viruses of zoonotic importance in Croatia. Pathogens 2021, 10, 73. https://doi.org/10.3390/pathogens10010073

Barakat, A.M.; Lapahat, O.; Hasoni, H.J. Lymphocytic choriomeningitis virus (LCMV) in Southern Iraq. Int. J. Sci. Eng. Res. 2015, 6, 1523-1535.

Kallio-Kokko, H.; Laakkonen, J.; Rizzoli, A.; Tagliapietra, V.; Cattadori, I.; Perkins, S.E.; Hudson, P.J.; Cristofolini, A.; Versini, W.; Vapalahti, O.; et al. Hantavirus and arenavirus antibody prevalence in rodents and humans in Trentino, Northern Italy. Epidemiol. Infect. 2006, 134, 830-836. https://doi.org/10.1017/s0950268805005431

Van Cuong, N.; Carrique-Mas, J.; Be, H.V.; An, N.N.; Tue, N.T.; Anh, N.L.; Anh, P.H.; Phuc, N.T.; Baker, S.; Voutilainen, L.; et al. Rodents and risk in the Mekong delta of Vietnam: Seroprevalence of selected zoonotic viruses in rodents and humans. Vector Borne Zoonotic Dis. 2015, 15, 65-72. https://doi.org/10.1089/vbz.2014.1603

Juncker-Voss, M.; Prosl, H.; Lussy, H.; Enzenberg, U.; Auer, H.; Lassnig, H.; Müller, M.; Nowotny, N. Screening for antibodies against zoonotic agents among employees of the Zoological garden of Vienna, Schönbrunn, Austria. Berliner und Münchener Tierärztliche Wochenschrift 2004, 117, 404-409. PMID: 15495931

Tagliapietra, V.; Rosà, R.; Rossi, C.; Rosso, F.; Hauffe, H.C.; Tommasini, M.; Versini, W.; Cristallo, A.F.; Rizzoli, A. Emerging rodent-borne viral zoonoses in Trento, Italy. Ecohealth 2018, 15, 695-704. https://doi.org/10.1007/s10393-018-1335-4

Knust, B.; Ströher, U.; Edison, L.; Albariño, C.G.; Lovejoy, J.; Armeanu, E.; House, J.; Cory, D.; Horton, C.; Fowler, K.L.; et al. Lymphocytic choriomeningitis virus in employees and mice at multipremises feeder-rodent operation, United States, 2012. Emerg. Infect. Dis. 2014, 20, 240-247. https://doi.org/10.3201/eid2002.130860

Ramírez-Olivencia, G.; Estébanez, M.; Membrillo, F.J.; Ybarra, M.D.C. Use of ribavirin in viruses other than hepatitis C. A review of the evidence. Enferm. Infecc. Microbiol. Clin. 2019, 37, 602-608. https://doi.org/10.1016/j.eimc.2018.05.008

Tian, D.; Liu, Y.; Liang, C.; Xin, L.; Xie, X.; Zhang, D.; Wan, M.; Li, H.; Fu, X.; Liu, H.; et al. review An update of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother. 2021, 137, 111313. https://doi.org/10.1016/j.biopha.2021.111313

Indari, O.; Jakhmola, S.; Manivannan, E.; Jha, H.C. An update on antiviral therapy against SARS-CoV-2: How far have we come? Front. Pharmacol. 2021, 12, 632677. https://doi.org/10.3389/fphar.2021.632677

Kim, Y.J.; Cubitt, B.; Chen, E.; Hull, M.V.; Chatterjee, A.K.; Cai, Y.; Kuhn, J.H.; de la Torre, J.C. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antivir. Res. 2019, 169, 104558. https://doi.org/10.1016/j.antiviral.2019.104558

Bösch, N.M.; Borsa, M.; Greczmiel, U.; Morinaka, B.I.; Gugger, M.; Oxenius, A.; Vagstad, A.L.; Piel, J. Landornamides: Antiviral ornithine-containing ribosomal peptides discovered through genome mining. Angewandte Chemie 2020, 59, 11763-11768. Trop. Med. Infect. Dis. 2021, 6, 88 19 of 19 https://doi.org/10.1002/anie.201916321

Mire, C.E.; Cross, R.W.; Geisbert, J.B.; Borisevich, V.; Agans, K.N.; Deer, D.J.; Heinrich, M.L.; Rowland, M.M.; Goba, A.; Momoh, M.; et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat. Med. 2017, 23, 1146-1149. https://doi.org/10.1038/nm.4396

Robinson, J.E.; Hastie, K.M.; Cross, R.W.; Yenni, R.; Elliott, D.H.; Rouelle, J.A.; Kannadka, C.B.; Smira, A.A.; Garry, C.E.; Bradley, B.T.; et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat. Commun. 2016, 7, 11544. https://doi.org/10.1038/ncomms11544

Cross, R.W.; Hastie, K.M.; Mire, C.E.; Robinson, J.E.; Geisbert, T.W.; Branco, L.M.; Saphire, E.O.; Garry, R.F. Antibody therapy for Lassa fever. Curr. Opin. Virol. 2019, 37, 97-104. https://doi.org/10.1016/j.coviro.2019.07.003

Krolik, M.; Csepregi, L.; Hartmann, F.; Engetschwiler, C.; Flatz, L. Recombinant lymphocytic choriomeningitis virus-based vaccine vector protects type I interferon receptor deficient mice from viral challenge. Vaccine 2021, 39, 1257-1264. https://doi.org/10.1016/j.vaccine.2021.01.047

Schmidt, S.; Bonilla, W.V.; Reiter, A.; Stemeseder, F.; Kleissner, T.; Oeler, D.; Berka, U.; El-Gazzar, A.; Kiefmann, B.; Schulha, S.C.; et al. Live-attenuated lymphocytic choriomeningitis virus-based vaccines for active immunotherapy of HPV16-positive cancer. Oncoimmunology 2020, 9, 1809960. https://doi.org/10.1080/2162402x.2020.1809960

Wilson, M.R.; Peters, C.J. Diseases of the central nervous system caused by lymphocytic choriomeningitis virus and other arenaviruses. In Handbook of Clinical Neurology, 3rd ed.; Tselis, A.C., Booss, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 123, pp. 671-681. https://doi.org/10.1016/b978-0-444-53488-0.00033-x

Cordey, S.; Sahli, R.; Moraz, M.L.; Estrade, C.; Morandi, L.; Cherpillod, P.; Charrel, R.N.; Kunz, S.; Kaiser, L. Analytical validation of a lymphocytic choriomeningitis virus real-time RT-PCR assay. J. Virol. Methods 2011, 177, 118-122. https://doi.org/10.1016/j.jviromet.2011.06.018

Anesi, J.A.; Silveira, F.P.; AST infectious diseases community of practice. Arenaviruses and west Nile virus in solid organ transplant recipients: Guidelines from the American society of transplantation infectious diseases community of practice. Clin. Transplant. 2019, 33, e13576. https://doi.org/10.1111/ctr.13576

Palacios, G.; Druce, J.; Du, L.; Tran, T.; Birch, C.; Briese, T.; Conlan, S.; Quan, P.L.; Hui, J.; Marshall, J.; et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 2008, 358, 991-998. https://doi.org/10.1056/nejmoa073785

Stuart, A.M.; Prescott, C.V.; MacIntyre, S.; Sethar, A.; Neuman, B.W.; McCarthy, N.D.; Wimalarathna, H.; Maiden, M.C.J. The role of rodents as carriers of disease on UK farms: A preliminary investigation. In Proceedings of the 8th European Vertebrate Pest Management Conference, Berlin, Germany, 26-30 September 2011; Julius-Kühn-Archiv: Quedlinburg, Germany, 2011; Volume 432, pp. 198-199. Trop. Med. Infect. Dis. 2021, 6, 88 17 of 19. https://doi.org/10.5073/jka.2011.432.110

Morita, C.; Tsuchiya, K.; Ueno, H.; Muramatsu, Y.; Kojimahara, A.; Suzuki, H.; Miyashita, N.; Moriwaki, K.; Jin, M.L.; Wu, X.L.; et al. Seroepidemiological survey of lymphocytic choriomeningitis virus in wild house mice in China with particular reference to their subspecies. Microbiol. Immunol. 1996, 40, 313-315. https://doi.org/10.1111/j.1348-0421.1996.tb03342.x

Laakkonen, J.; Kallio-Kokko, H.; Oktem, M.A.; Blasdell, K.; Plyusnina, A.; Niemimaa, J.; Karata¸s, A.; Plyusnin, A.; Vaheri, A.; Henttonen, H. Serological survey for viral pathogens in Turkish rodents. J. Wildl. Dis. 2006, 42, 672-676. https://doi.org/10.7589/0090-3558-42.3.672

Castellar, A.; Guevara, M.; Rodas, J.D.; Londoño, A.F.; Arroyave, E.; Díaz, F.J.; Levis, S.; Blanco, P.J. First evidence of lymphocytic choriomeningitis virus (Arenavirus) infection in Mus musculus rodents captured in the urban area of the municipality of Sincelejo, Sucre, Colombia. Biomedica 2017, 37, 75-85. https://doi.org/10.7705/biomedica.v37i2.3226

Duh, D.; Hasic, S.; Buzan, E. The impact of illegal waste sites on a transmission of zoonotic viruses. Virol. J. 2017, 14, 134. https://doi.org/10.1186/s12985-017-0798-1

Barton, L.L., Peters C.J., Ksiazek T.G. Lymphocytic choriomeningitis virus: An unrecognized teratogenic pathogen. Emerg. Infect. Dis. 1995, 1, 152-153. https://doi.org/10.3201/eid0104.950410

Barton, L.L.; Mets, M.B.; Beauchamp, C.L. Lymphocytic choriomeningitis virus: Emerging fetal teratogen. Am. J. Obstet. Gynecol. 2002, 187, 1715-1716. https://doi.org/10.1067/mob.2002.126297

Kinori, M.; Schwartzstein, H.; Zeid, J.L.; Kurup, S.P.; Mets, M.B. Congenital lymphocytic choriomeningitis virus-An underdiagnosed fetal teratogen. J. AAPOS 2018, 22, 79.e1-81.e1. https://doi.org/10.1016/j.jaapos.2017.08.011

Downloads

Published

2024-01-12

Issue

Section

Articles

How to Cite

(1)
Gladnishka, T.; Trifonova, I.; Ivanova, V.; Christova, I. LYMPHOCYTIC CHORIOMENINGITIS VIRUS INFECTION: What Is Done and Prospects for Future Studies. Probl Infect Parasit Dis 2024, 51 (2), 11-18. https://doi.org/10.58395/c51sc073.

Most read articles by the same author(s)

1 2 > >>